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Theorem 1.3.4.23. Compatibility conditions
for piecewise smooth functions in H'(Q))

Let () be partitioned into sub-domains () and
(),. A function u that is continuously differ-
entiable in both sub-domains and continuous
up to their boundary, belongs to H' (Q)) fiffand
onlyiifu is continuous on ().
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Third main ingredient of FEM: locally supported basis functions
(see Section 2.2 for role of bases in Galerkin discretization)

Basis functions b,lz,. o b,]f for a finite element trial/test space V) ;, built on a mesh M must satisfy:
(By) B, ‘=,{b;11' ...,by }isbasisof Vy, > N =dimVy,
(Ba) each b, is associated with a single geometric entity (cell/edge/face/vertex) of M,

(B3) supp(lf,) = | J{K:K € M, p CK},if bl associated with cell/edgelface/vertex p.

2 8 13 narfehast
1. follows by the definition of CR(M ) and Sub-problem (2-14.b). These two combined imply that the

set of functions definedin (2.14.1) are a basis for an N-cimensional finite element space CR (M) C
L¥(0)).

2. holds as each b} is associated {o a single edge
3. As we saw in Sub-problem (2-14.), if b} is associated with the edge e, then supp(t} ) = (J{K :
KeM,ecC K} Moreover, #{_K eM:KC supp( ;1)} =2 914 07 shnfn




/ Give the C++ code for the initialization of a LEHRFEM++ If::assemble::DofHandler object suitable for
the finite element space CR (M ), if a pointer to a If::mesh::Mesh object describing the triangular mesh
M is available in the object mesh_p. 2-14 Wgoﬂx

SOLUTION of (2-14.i):

1f::assemble: :UniformFEDofHandler dof_ handler (
mesh_p, {{1lf::base::RefEl::kPoint (), 0},
{1lf::base: :RefEl::kSegment (), 11},
{1lf: :base: :RefEl::kTria(), 0},

{1f: :base: :RefEl::kQuad(), 0}1});
2-14-9-1 -c4x

5/ LmﬂZ\%@% bonchirn éﬁfldfﬁ;ys o
Wneary  com brnatiom p{ ,ézfmf/m/zﬁ/c covelenals
Conciovy

bola') = 7
b, (a® )
O b, (a’)

I\

? / Definition 2.8.3.1. Parametric finite elements

A finite element space on a mesh M is called parametric, if there exist a few reference elements
Ki,...,Kg, R € N, numbers Qg € N, and functions b. € C%(K),i =1,...,Q,r=1,...,R,
such that

VK e M: 3re{l,...,R}, bijection @y : K — K: b.=®%bk, i=1,...,Q ,

where {b1 e, bg} is the set of local shape functions on K.

2 8 24 def:narfd
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Let Ak, K € M a triangle, be the element matrix for the bilinear form (1,v) — [ grad u - grad vdx
and the Lagrangian finite element space S? (M) equipped with the standard “tent-function basis”.

Write A%R for the element matrix spawned by the bilinear form a 4, the finite element space CR (M) and
the basis introduced in (2.14.1). Which congruence transformation converts Ag into Ag% 18 sp'Ba

Lemma 2.2.3.2. Effect of change of basis on Galerkin matrix

Consider (2.2.1.1) and two bases of V ;,,

By = {b},...,bNNY , By :={b},..., b},

related by the basis transformation matrix S according to
= - k N N,N
b = kzl sikby, with S = [sj] k1 € RV regular (2.2.3.3)

Then the Galerkin matrices A, A € RNV, the right hand side vectors $,p < RN,
and the coefficient vectors 7i, ji € RN, respectively, satisfy

A=SAS' , $=Sp , i=S "j. (2.2.3.4)
2 2 13 lem:bascha
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Give the formula for the element matrix for the finite element space CR (M) equipped with the basis
introduced in (2.14.1), a triangular cell K € M, and for the bilinear form a, from (2.14.7) evaluated
approximately by means of (2.14.9).

You can use the symbol A%R for the element matrix computed in Sub-problem (2-14.n).2_.14 24 gp:7

aM(uh,vh)—i—/Q c(x)u,,(x)v;,(x)dx='/ﬂ F(x)op(x)dx Yo, € CRo(M), (2.14.6)
with an (uy,vp) = Z /grad u(x) - grad v(x) dx . (2.14.7)
Kem /K 2-14 15 eaq:vc
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P ) Give the formula for the element right-hand-side vector (element load vector) g, K € M, for the varia-
tional problem (2.14.6) discretized by means of CR(M ). Since the source function f is available only in
procedural form, use the quadrature formula (2.14.9) locally. 2-14 26 sp:7a
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Implement the following member functions of CRReferenceFiniteElement:

e base: :RefEl CRReferenceFiniteElement: :RefEl () const;
unsigned int CRReferenceFiniteElement:

= TRIA

:Degree () const; 7

size_type CRRefer
const; —

size_type CRReferenceFiniteElement:
dim_t codim) const; = 7

CWM—’ 4 gp%
size_type CRReferenceFiniteElement: :NumRefShapeFunctions (

dim_t codim, sub_idx_t/}ﬁs@) const;

® Eigen:

ceFiniteElement: : NumRefShapeFunctions ()

:NumRefShapeFunctions (

:Matrix<double, Eigen:
CRReferenceFiniteElement:

:Dynamic, Eigen::Dynamic>
:EvalReferenceShapeFunctions (

const Figen::MatrixXd& refcoords) const; 2-14 29 srfe
4
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(// Implement the member function

Ei

jen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>

CRReferenceFiniteElement: :GradientsReferenceShapeFunctions

const Eigen::

trixXd& refcoords) const;

Look up the web page =* (documentation) to find the specification for this meth@d.33 <«n-9h

valud o Gy w o of & mahix

C++ code 2.14.14: Sub-problem (2-14.r): GradientsReferenceShapeFunctions () for

Lelom

CRReference

FiniteElement => GITLAB

const

Eigen:

© ® N o 0 A @ N

10 grad_re

14 grad_re
15 2.
16 grad_re

20 /* END_

22 return

// TODO:
/* BEGIN_SOLUTION */

Eigen:: Matrix<scalar_type, Eigen::
CRReferenceFiniteElement :

task 2-14.r) >

f_shape_functions .row(0)

Dynamic, Eigen ::Dynamic>

:GradientsReferenceShapeFunctions( Vo 7
Eigen::MatrixXd& refcoords) const {
const auto num_points = static_cast<size_type>(refcoords. cols())'

:MatrixXd grad_ref_shape_functions (3, 2 * num_points) /672
Cowidionh ave wmfimf
= (Eigen::Vector2d() << 0, —2) Z"f
.finished ()
.transpose ()
.replicate(1, num_points);

f_shape_functions.row(1) =
* Eigen::VectorXd::Ones(2
f_shape_functions.row(2) =

SOLUTION */

grad_ref_shape_functions;

* num_points) . transpose () ;
(Eigen::Vector2d() << —2, 0)
.finished ()
.transpose ()
1

.replicate(1, num_points);

2-14 34 cpp:refel

Implement the following member functions of CRReferenceFiniteElement:

Gl i

Eigen: :MatrixXd CRReferenceFlnlteElement :EvaluationNodes ()
const;
P> m/w(pﬂn .c% e,
[ ]
Eigen::Matrix<double, 1, Eigen::Dynamic>

CRReferenceFiniteElement: :NodalValuesToDofs (

const Eigen::Matrix<SCALAR,

Eigen: Dynamic>& nodvals)

const; /)7%/ Mﬂ{ /p/ﬁ//«
hat in LEHRFEM++ an “eval-

For explanations see [Lecture — § 2.8.3. 24] and =* (documentation). Not
uation node” corresponds to a local interpolation node. The local interpolation nodes for RM (M) are

just the midpoints of the edges of a triangle. o

Implement a class

for

those).

14 35 spn:9c

CRFeSpace compliant with LEHRFEM++'s interface
/b / If::uscalfe::ScalarUniformFESpace (and derived from it) for the finite element space CR(M).
This interface is presented in [Lecture — § 2.8.3.27.
Take the cue from the implementation of If::uscalfe::FeSpaceLagrangeO1, but note that you need only
supply the specification for local shape functions on triangles, none for QUADs and EDGEs (pass nullptr
2-14 38 sp:9x



C++ code 2.14.17: Sub-problem (2-14.t): Implementation of CRFeSpace, => GITLAB

class CRFeSpace : public If ::uscalfe::UniformScalarFESpace<scalar_type> {
public:
VT
* @brief no default constructors
*/
CRFeSpace() = delete;
CRFeSpace(const CRFeSpace &) = delete;
CRFeSpace(CRFeSpace &&) noexcept = default;
10 CRFeSpace &operator=(const CRFeSpace &) = delete;
1" CRFeSpace &operator=(CRFeSpace &&) noexcept = default;

© ® N o 0 A W N

13 VT
14 * @brief main constructor that sets up the local-to—global index mapping
15 * @param mesh _ptr shared pointer to underlying mesh (immutable)
16 */
17 explicit CRFeSpace(std::shared_ptr<const If ::mesh::Mesh> mesh_ptr)
18 : If ::uscalfe:: UniformScalarFESpace<scalar_type >(
19 std : :move(mesh_ptr) ,
std :: make_shared<CRReferenceFiniteElement > () ,
20 nullptr, nullptr) {
21 // TODO: task 2-14.t)

2 /+ BEGIN_SOLUTION +/ /)/(c é %
= /+ END_SOLUTION */ N % O
24 }

% ~CRFeSpace() override = default;

2-14 39 cop:crfes

Implement a C++ function

40[ template <typename GAMMA_COEFF, typename F_FUNCTOR>
/ Eigen::VectorXd solveCRNeumannBVP (std: :shared_ptr<CRFeSpace>
fe_space,
GAMMA_COEFF &&gamma
F_FUNCTOR (&&f);

that solves the discrete variational problem (2.14.6) with C Ry (M) replaced with CR (M) (no boundary
conditions enforced on trial and test space any more) and returns the basis expansion coefficient vector
of the solution u;, € CR(M). The argument gamma passes a functor (with evaluations operator

double operator () (Eigen::Vector2d x) const;

for the coefficient function v € C%(Q)) that is supposed to be uniformly positive.

Of course, your implementation should rely on the assembly functions in the LEHRFEM++
module 1f::assemble. Moreover, you can make use of the LEHRFEM++ classes
If::uscalfe::ReactionDiffusionElementMatrixProvider  ([Lecture — Ex. 2.8.3.28)) and
If::uscalfe::ScalarLoadElementVectorProvider, which can serve as builder helper classes for ele-
ment matrices and element vectors. Note that functions are passed as If::uscalfe::MeshFunctionGlobal
objects to the constructors of these classes!

Examining [Lecture — Code 2.8.3.30] convince yourself that the Eval () member functions of theses
classes will smoothly work in the case of CR (M) provided that the finite element space contains the
right If::uscalfe::ScalarReferenceFiniteElement object. 2-14 40 sp:12a

aw(lliuvh)+/Qﬂx)“h(x)vh(x)dx: / f(x)o,(x)dx Vo, € CRo(M), (2.14.6)

with — ay(uy,vp) := gradu(x) - grado(x) dx . (2.14.7)
KEM £ 2-14 15 ea:vc



C++ code 2.14.18: Sub-problem (2-14.u): Implementation of solveCRNeumannBVP (),
= GITLAB

21

23

24

25

27

28

template <typename GAMMA COEFF, typename F_FUNCTOR>
Eigen::VectorXd solveCRNeumannBVP ( std : : shared_ptr<CRFeSpace> fe_space,

Eigen:: VectorXd sol;

/* BEGIN_SOLUTION */

// Obtain local to global index mapping for shape functions

const If ::assemble:: DofHandler &dof_handler{fe_space—>LocGlobMap() };
const size_type num_dofs = dof_handler.NoDofs () ;

// Prepare coefficient and source functions as MeshFunction

:uscalfe :: MeshFunctionGlobal mf_one{

If:

If:
If:

If:

If:

// Fill Galerkin matrix (create array of triplets)
:assemble : : AssembleMatrixLocally(0, dof_handler, dof_handler,

If:

// Right-hand-side vector; do not forget to set to zero!

Eigen:: Matrix<double, Eigen::Dynamic, 1> phi(num_dofs) ;

.setZero() ;

// Initialize ELEMENT VECTOR PROVIDER object

:uscalfe :: ScalarLoadElementVectorProvider<double, decltype(mf_f)>

phi

If:

// Fill right-hand-side vector (cell oriented assembly)
:assemble :: AssembleVectorLocally (0, dof_handler, load_vector_builder,

If:

// Set up Galerkin matrix in CRS format

Eigen:: SparseMairix<scalar_type> A_crs = A.makeSparse() ;
47 oo
Eigen ::SparselLU<Eigen :: SparseMatrix<scalar_type>> solver;
solver.compute(A_crs) ;

sol

/* END_SOLUTION x/
return sol;

:uscalfe :: MeshFunctionGlobal mf gamma{gamma};

:uscalfe :: MeshFunctionGlobal mf_f{f};

// Sparse Galerkin matrix in triplet format
:assemble :: COOMatrix<scalar_type> A(num_dofs, num_dofs) ;
// Initialize ELEMENT_MATRIX_ PROVIDER object

:uscalfe :: ReactionDiffusionElementMatrixProvider<

GAMMA COEFF &&gamma, F FUNCTOR &&f) {

[1( Eigen::Vector2d x) — double { return 1.; }};

scalar_type, decltype(mf_one), decltype(mf_gamma)>
element_matrix_builder(fe_space, mf_one, mf gamma) ;

element_matrix_builder, A);

load_vector_builder(fe_space, mf_f);

phi);

and solve the linear system of equations by Gaussian elimination

= solver.solve(phi);

2-14 41 cobp:crneu

Based on LEHRFEM++’s assembly facilities and the classes If::uscalfe::ReactionDiffusionElementMatri
and If::uscalfe::ScalarLoadElementVectorProvider create a C++ function

template <typename GAMMA_COEFF, typename F_FUNCTOR>
Eigen::VectorXd solveCRDirichletBVP (std::shared_ptr<CRFeSpace>
fe_space,
GAMMA_COEFF &&gamma,
F_FUNCTOR &&f);

that solves (2.14.6) with trial and test space CRo(M ), which is supposed to provide a non-conforming
finite element discretization for the a Dirichlet boundary value problem with homogeneous Dirichlet bound-
ary conditions. The arguments and return value are the same as in Sub-problem (2-14.u).

To solve this problem remember how to enforce Dirichlet boundary conditions in LEHRFEM++: [Lecture

— 27). 2-14 42 sp:13
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We now want to compute the LZ(2)-norm of the finite element discretization error 1, — u of the CRo(M)
non-conforming finite element solution of the homogeneous Dirichlet problem (2.14.5), where u € H'(Q))
stands for its exact solution.

For this purpose, write the code for a Ifpp-based C++ function

template <typename FUNCTION>
double computeCRL2Error((std::shared_ptr<CRFeSpace> fe_space,

const Eigen::VectorXd &mu,
FUNCTION && u)

which takes as input arguments
e a CRFeSpace object for the finite element space CR (M),
e a Column vector mu supplying the basis expansion coefficients a finite element function 1), (x) =
] " y]b{,( ) € CR(M), and
e a functor object u, which allows access to the exact solution 1 through a point-evaluation operator
with signature double operator(Eigen::Vector2d x)const.
and returns the L?(Q))-norm of the CR finite element discretization error: |[u;, — u l12(0)-
Compute the norm directly in a cell oriented fashion using a loop over the cells and the local quadrature
formula (2.14.10). 2914 44 an-15

L éc%%*rr%%p&zh% ole
K 3

P(x)dy ~ 3 p(my), KeM, (2.14.10)

2-14 23 ea:emp

C++ code 2.14.20: Sub-problem (2-14.w): Implementation of computeCRL2Erxrror,
- GITLAB

© 0 N O O b O N

template <typename FUNCTION=>
double computeCRL2Error(std :: shared_ptr<CRFeSpace> fe__space,
const Eigen :: VectorXd &mu, FUNCTION &&u) {
double 12_ _error = O0.;
/A BEGIN_ _SOLUTION =/
S/ Obtain local—to—global map and current mesh object
const If ::assemble:: DofHandler &dof_ handler {fe_space-—>=LocGlobMap() }:
auto mesh__ptr = fe__space-—>Mesh () ;

S/ Loop over all cells of the mesh (entities of co—dimension O0)
for (const If ::mesh:: Entity &cell : mesh_ptr—>Entities (0)) {
const size_type num_nodes = cell . RefEI () .NumNodes () :
LF_ASSERT _MSG(num_nodes == 3, "Only meaningful for triangles!") ;
S/ Obtain pointer to shape information for cell
If ::geometry : : Geometry &cell _geom{x cell. Geometry () }:
/S 2x3— matrix with corner coordinates in its columns
const Eigen :: MatrixXd vertices{If ::geometry:: Corners(cell_geom) };
// clang—format off
S/ 2x3—matrix of midpoint coordinates
auto midpoints{vertices =
(Eigen :: Matrix<double, 3, 3>(3.,3) <<

OL55 0L0L OSS

0.5, 0.5, 0.0,

0.0, 0.5, 0.5)
.finished () };

// clang—format on

S/ Obtain global indices of local shape functions

const |If ::base :: RandomAccessRange<const gdof_idx_t> cell_dof_idx (
dof_handler. GlobalDoflndices(cell)) :

// Sum contributions of guadrature nodes

double local_sum = O0.;

// The CR interpolation nodes are the midpoints and so the exact
// solution needs to be evaluated at the same points

for (int loc__idx = O; loc_idx < num_nodes;:; ++loc_idx) {
local _sum +=
std : :pow(mu[ cell_dof_idx[loc_idx ]] — u(midpoints.col(loc_idx)), 2);

}

// Sum cell contributions

12 error += If ::geometry::Volume(cell _geom) *x (local_sum / num_nodes) ;
}
/S * END SOLUTION =/
return std::sqrt(l2__error) ;

2-14 45 copp:computel 2Error



Empirically we study the behavior of the Lz(Q)-norm of the CRo (.M )-discretization error for the 2nd-order
elliptic boundary value problem with a known solution 1, with the data

flx) = (2712 + x1x7) sin(7tx1 ) sin(7Txy)

X1
c(x) = x1x2, X = l ] . (2.14.21)
u(x) = sin(7txq ) sin(7rxy) ,

Code a C++ function
double L2errorCRDiscretizationDirichletBVP(std::string filename);

that reads a 2D triangular mesh M from a .msh-file with name filename, computes the CR (M )-
finite element solution 1, of the homogeneous Dirichlet boundary value problem (??) on it using the data
from (2.14.21), and returns the |1 — uy || 12(qy).- 514 46 <n'14

C++ code 2.14.22: Sub-problem (2-14.x): Implementation of
L2errorCRDiscretizationDirichletBVP () => GITLAB

> [double L2errorCRDiscretizationDirichletBVP(const std:: string &filename) {
double |2 error;

// TODO: task 2-14.x)

/* BEGIN_SOLUTION x/

// Right-hand-side source function

8 auto f = [](Eigen::Vector2d x) —> double ({

~ o v -~ w

9 return (2. «* M_Pl * M_Pl + x.prod()) % std::sin(M_PI x x(0)) =
10 std::sin(M_PI * x(1));

1 e

12 // Reaction coefficient

13 auto gamma = [](Eigen::Vecior2d x) —> double { return x.prod(); };
14 // Analytic solution

15 auto u = [](Eigen::Vector2d x) —> double {

16 return std::sin(M_Pl % x(0)) % std::sin(M_PI * x(1));

17 };

19 // Read mesh from file
20 auto mesh_factory = sitd::make_unique<I|f ::mesh:: hybrid2d:: MeshFactory>(2);
21 const If ::io::GmshReader reader(std::move(mesh_factory), filename);

23 // Build CR FE space
24 auto fe_space = std::make_shared<CRFeSpace>(reader.mesh() ) ;

26 // Solve homogeneous Dirichlet problem

27 Eigen::VectorXd mu = solveCRDirichletBVP (fe_space, gamma, f);
28 // Compute L2 norm of error

29 I12_error = computeCRL2Error(fe_space, mu, u);

30 /% END_SOLUTION x*/

32 return |2 _error;

2-14 47 cpp:testbvno
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