ETH Lecture 401-0674-00L Numerical Methods for Partial Differential Equations

Homework Problem Video Tutorial

Problem 2-13: Local computations for
parametric Lagrangian finite elements

Prof. R. Hiptmair, SAM, ETH Zurich

Date: March 18, 2019
(C) Seminar fiir Angewandte Mathematik, ETH Zrich

LVP

A;(I+—d(x)d(x)T)gradzz~gradz2dx-+ w?(x)u(x) v(x) dS(x) =

(

JoQ)
L

v(x)]
.,/dex Vo€ H'(Q), (213.1)

A, Shﬁﬂéz éﬂwz BUP: m

L. Tt with v& CT02) + by = PDB
~ dhv [T+ d[()d[X)T)ng/ﬂ/M-: (;[;(Z)e m G2

T me;r %Iz;/] gental e C2(PR) + b 4

<
> !m/o- b.c. jwﬁc‘n Ea W&)M =0 m 57

Neow w & S'l) — ve Y p-sp61)
A/ /Y4 é&(ﬁ&*m(‘%f&@h% AK

—

@

)

P

(AK),-]-=/A(a('<l>(';i;)')(D€I>) Tgrad?'). ((D®) " grad b/)| detD®|dx
; N R (2.8.3.11)
=/A((D<I>) l4(®(3))(D®) ") grad b’ - grad b/| det D®| d .
K
Eigen::MatrixXd 1f::geometry::Geometry: :JacobianInverseGramian (const
FEigen::MatrixXd &local) const;

Implement a class AnisotropicDiffusionElementMatrixProvider (file
ansiotropic_diffusion_element_matrix_provider.cc)

class AnisotropicDiffusionElementMatrixProvider {

public:
using elem_mat_t = Eigen::Matrix<SCALAR, Eigen::Dynamic,
Eigen::Dynamic>;

using ElemMat = const elem_mat_t;
using vectorfield t =
std: :function<Eigen::Vector2d(Eigen::Vector2d)>;

AnisotropicDiffusionElementMatrixProvider(vectorfield_t V£f_d);
bool isActive(const 1f::mesh::Entity &) { return true; }
ElemMat Eval(const 1f::mesh::Entity &cell);

private:
vectorfield_t VE_d_;

bi

compliant with LEHRFEM++'s concept of an ENTITY_MATRIX_PROVIDER is discussed in [Lecture —
Ex. 2.7.4.29]. lts Eval () member function is to compute (based on (2.13.2)) the SY(M)-element matrix
for the bilinear form (i1, v) — [, (1+ d(x)d(x) ") grad u - grad v dx.

Exclusively use functions of the 1£7 sh and 1f::geometry layer of LEHRFEM++, no built-in
quadrature rules.

AMAD /o'c A fhsion tenar € L%

FEM /@b&&% m

W/VME’L‘C

%QE/ x) dx &~ ﬁvf)(me KeM. (2.13.2)
LV b Taamgtl K

C++11 code 2.13.3: Sub-problem (2-13.b): Implementation of Eval () member function of
AnisotropicDiffusionElementMatrixProvider for triangles => GITHUB

result = Eigen:: MatrixXd::Zero(3, 3);

// midpoints of the edges of the reference triangle
Eigen:: Matrix<double, 2, 3> midpoints_loc(2, 3);
midpoints_loc << 0.5, 0.5, 0, 0, 0.5, 0.5; |
// obtain global midpoints f(
auto midpoints_glob = geom—>Global (midpoints_loc) ;

O
v

©w -] ~ -] v S w N

// get jacobian and determinants (scaling)

10 const Eigen::MairixXd JinvT(geom—>JacobianinverseGramian(midpoints_loc));
11 const Eigen::VectorXd

determinants (geom—>IntegrationElement(midpoints_loc)) ;

12 // local gradients

13 Eigen:: Matrix<double, 2, 3> grads_loc(2, 3);

14 grads_loc << —1, 1, 0, —1, 0, 1;

15 // loop over quadrature points

16 for (int i = 0; i < 3; i++) {

17 // prepare extra factor matrix

18 Eigen:: Vector2d d_x = AnisotropicDiffusionElementMatrixProvider :: Vf_d_ (<2
19 midpoints_glob.col(i));

2 Eigen:: Matrix2d factor_matrix = ()
21 Eigen ::Matrix2d :: Identity(2, 2) + d_x * d_x.transpose() ; } O(7(/
22 // compute global gradients

23 Eigen :: MatrixXd grad_glob(2, 3); 7(:
24 grad_glob = JinvT. (0, 2 % i, 2, 2) % grads_loc; ¢ Z(ﬂ{

25 // add contributions to element matrix \7

2 for (int j = 0; j < 3; j++) {

27 for (int k = 0; k < 3; k++) {

28 double tmp =

29 grad_glob.col(j).transpose() *x factor_matrix =

grad_glob.col(k);

30 result(j, k) += determinants(i) * tmp;

a1 }

% }

s }

34 // multiply with area divided by 6 (3 quad points and RefEl has area 0.5)
35 result *= 1. / 6.;

@ Local computations related to finite element Galerkin right-hand-side vectors are usually farmed

out to objects matching the LEHRFEM++ concept of ENTITY_VECTOR_PROVIDER, see [Lecture

6/ — Ex. 2.7.4.29], [Lecture — Code 2.7.4.32|. Implement a corresponding class (file
fe_source_elem_vec_provider.cc)

class FESourceElemVecProvider {

public:
using elem_vec_t = Eigen::Matrix<SCALAR, Eigen::Dynamic, 1>;
using ElemVec = const elem_vec_t;

FESourceElemVecProvider (
1f::uscalfe::UniformScalarFESpace<double> &lin_Lagr_ fe_ space,
Eigen::VectorXd w_coeff wvec);

bool isActive (const 1f::mesh::Entity &) { return true; }

ElemVec Eval (const 1f::mesh::Entity &cell);

private:
1f::uscalfe::UniformScalarFESpace<double> &lin_Lagr_fe_space_;
Elgen::VectorXd w_coeff_vec_;

) ;

whose Eval () member functions returns the element load vector for the right-hand-side functional of
(2.13.1) discretized on S?(M) equipped with the customary tent-function global shape functions. The
constructor accepts an object encoding the finite element space S?(M), see [Lecture — § 2.8.3.27] and
the basis expansion coefficient vector w_coef f_vec for the function w. Again, use the local quadrature
rule (2.13.2).

(2.13.2)

YM%

QlQ.' ./qu(x)dx%TK) p(my), Ke M.

—_ Lwe-

bing “an

ﬂ(Compute the S{’(M)-element matrix spawned by the bilinear form
(u,0) — / w?(x)u(x)v(x)dS(x), u,0e H(Q),
Ja

for a straight edge of M located on d(), cf. [Lecture — Ex. 2.5.3.7]. Use that w € Sy (M) and express
the entries of the element matrix in terms of the values w; and w; of w in the endpoints of the edge.

> 4%%4%% % 65(04(3
Recall i [SFS om éﬂ%&i

A Z
7

N

— L 2

i <
D> W = ﬂr“LWng

Lemma 2.7.5.5. Integration of powers of barycentric coordinate functions

For any non-degenerate d-simplex K with barycentric coordinate functions A1, . . .
nents o € N,j=1,...,d+1,

,Aq1 and expo-

aqlagl oo Kgyq!
(a1 +ag+---

Aoply b ol =T [

T ETE g

JAG A de = K] ve e NGt (27.58)
K

o
B f (wl/\l + 102/\2)2/\2 ds f (wl/\l + wz/\z) A /\2 ds
¢ f (wl/\l + ZU2/\2)2/\1/\2 ds f (w1/\1 + ZU2/\2)2/\2 ds
o2 [JoMdS fAhads],
/, /\3/\2 ds f /\2/\2 ds

2.13.7
o |eAA2dS [,ATAZdS] | (13.7)
102 A22ds f/\l/\3d5
2 [[:A3A3dS [, MA3ds
[, A1A3dS fe/\g_dS '
el [o[24 6 6 4 ,[4 6
\.Be—m Wil 4 + wqwo 46 + w5 6 24|) (2.13.8)
e Implement a class (file impedance_boundary_edge_matrix_provider.cc)
/ class ImpedanceBoundaryEdgeMatrixProvider {
blic:
p:ﬁ;; elem_mat_t = Eigen::Matrix<double, Eigen::Dynamic,
Eigen::Dynamic>;

using ElemMat = const elem_mat_t;

ImpedanceBoundaryEdgeMatrixProvider (
1f::uscalfe::UniformScalarFESpace<double> &lin_Lagr_fe_space,
Eigen::VectorXd w_coeff_wvec);

I/_A bool 1sAct1ve(const 1f::mesh::Entity &);

ElemMat Ewval(const 1f::mesh::Entity &cell);

private:

1f::uscalfe::UniformScalarFESpace<double> &lin_Lagr_fe_space_;

Eigen::VectorXd w_coeff_vec_;

std: shared _ptr<lf::mesh::utils::CodimMeshDataSet<bool>> bd_flags_;

}i

fitting LEHRFEM++'s concept of ENTITY_MATRIX_PROVIDER that computes the edge element matrix
derived in Sub-problem (2-13.d) using the result of 1 f: : geometry: :Volume as a substitute for the
length |e| of the edge. The arguments for the constructor are the same as those for the constructor of the
class FESourceElemVecProvider from Sub-problem (2-13.c).

Note that this time you also have to supply a non-trivial isActive () method that returns true, when
given an edge on the boundary.

C++11 code 2.13.9: Sub-problem (2-13.e): Constructor of ImpedanceBoundaryEdgeMatrix-
Provider =» GITHUB

ImpedanceBoundaryEdgeMatrixProvider: : ImpedanceBoundaryEdgeMatrixProvider (
std :: shared_ptr<I|f ::uscalfe :: UniformScalarFESpace<double >>
lin_Lagr_fe_space,
Eigen :: VectorXd w_coeff_vec) ({
ImpedanceBoundaryEdgeMatrixProvider::lin_Lagr_fe_space_ =
lin_Lagr_fe_space;

(=] o S w N

7 ImpedanceBoundaryEdgeMatrixProvider::w_coeff_vec_ = w_coeff_vec;
8 // initialize boundary flags for isActive() function

9 auto mesh = lin_Lagr_fe_space—>Mesh() ;

10 ImpedanceBoundaryEdgeMatrixProvider:: bd_flags_ =

1 std :: make_shared<|f ::mesh:: utils :: CodimMeshDataSet<bool>>(

12 If ::mesh:: utils ::flagEntitiesOnBoundary (mesh, 1));

£ b lftog/é W&mn? with LF+ puilk-w

template <typename SCALAR, typename DIFF_COEFF, typename
REACTION_COEFE>
ReactionDiffusionElementMatrixProvider<SCALAR, DIFF_COEFF,
REACTION_COEFF>: :
ReactionDiffusionElementMatrixProvider (
std: :shared_ptr<UniformScalarFESpace<SCALAR>> fe_space,
DIFF_COEFF alpha, REACTION_COEFF(gamma,
quad_rule_collection_t gr_collection);

using quad_rule_collection_t = std::map<lf::base::RefEl,
1f::quad: :QuadRule>;

e a(u,v)=/a(x)gradu-gradv+ uodx, u,vEHl(Q),

0 byd/EO

283.29)

S

Pozo ot(x) —= Meshfonction m

C++11 code 2.13.12: Sub-problem (2-13.f): Unit test for AnisotropicDiffusionElementMatrix-
Provider => GITHUB

(4 £ w N

TEST (ParametricElementMatrices , TestGalerkin) {
/+* SOLUTION BEGIN */
// use test mesh to set up fe space
auto mesh = If ::mesh:: test_utils :: GenerateHybrid2DTestMesh (0, 1);
auto fe_space =
std :: make_shared<|f :: uscalfe :: FeSpaceLagrangeO1<double >>(mesh) ;
const If ::assemble:: DofHandler &dofh{fe_space-—>LocGlobMap() };
const If ::base::size_type N_dofs(dofh.NoDofs()):;

// compute galerkin matrix for d(x) = (0,0)’ using the implemented class
If ::assemble :: COOMatrix<double> A(N_dofs, N_dofs);
auto d = [](Eigen::Vector2d x) — Eigen::Vector2d {
return Eigen::Vector2d::Zero() ;
}:
auto elmat_builder =
ParametricElementMatrices :: AnisotropicDiffusionElementMatrixProvider(d) ;
If ::assemble :: AssembleMairixLocally (0, dofh, dofh, elmat_builder, A);
// compute galerkin matrix using ReactionDiffusionElementMatrixProvider
If ::assemble :: COOMatrix<double> B(N_dofs, N_dofs) ;
auto identity = [](Eigen::Vector2d x) —> double { return 1.; };
If ::uscalfe :: MeshFunctionGlobal mf_identity {identity };
auto zero = [](Eigen::Vector2d x) — double { return 0.; };
If ::uscalfe :: MeshFunctionGlobal mf_zero{zero};
// set up quadrature rule to be able to compare
std ::map<|f ::base:: RefEl, If ::quad::QuadRule> quad_rules{
{If ::base:: RefEl:: kTria(), If::quad::make_TriaQR_EdgeMidpointRule ()},
{If ::base:: RefEl ::kQuad() , If ::quad:: make_QuadQR_EdgeMidpointRule() }};

If ::uscalfe :: ReactionDiffusionElementMatrixProvider<
double, decltype(mf_identity), decltype(mf_zero)>
elmat_builder_org(fe_space, mf_identity , mf_zero, quad_rules) ;

If ::assemble :: AssembleMatrixLocally(0, dofh, dofh, elmat_builder_org, B);

auto A_crs = A.makeSparse() ;
auto B_crs = B.makeSparse() ;
// compare results (floating point comparison!)

for (int i = 0; i < N_dofs; i++) {
for (int j = 0; j < N_dofs; j++) {
ASSERT_NEAR(A_crs.coeff(i, j), B_crs.coeff(i, j), 0.001);

d 0 . >
}/* SOLUT;D—MND’E/KOKL/]”% mmf\ CﬁW&Oh

9
V

Teof v+ h S wvector

/

Tt conduckd v Lineor w & S2(M)

V' Cpduck g ot (v @ s with mly

NumPDE@ETHZ

NumPDE@ETHZ

