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Homework Problem Video Tutorial

~ Problem 3-3: Dirichlet BVP with
Point-Evaluation Right-Hand-Side Functional
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Date: March 29, 2019
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d( Implement a function

/ Eigen: :Ve r2d GlobalInverseTria (
Eigen::Matrix<double, 2,3> vertices,
Eigen: :Ve r2d x);

accepting the arguments
e vertices, a matrix whose columns store the coordinates of the vertices of a planar triangle K
e x,the coordinates of a point x in the plane.
The function should return the coordinates of the pre-image ¥ of x under the affine mapping ®x : K — K,
K the usual “unit triangle”.
The returned coordinates need not be located inside K, which indicates that x ¢ K.
For the sake of stable implementation use EIGEN’s direct elimination solver for small dense matrices.
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Implement a C++ function
e P

/ std: :pair<double, double> solveQuadraticEquation (
double a, double b, double c);

that computes the real roots of the quadratic equation
'3
al v bitc=0,> T + /Df+7 = O

and returns NAN (“Not a number”, see std: :nan () ), in case none exist.

Remember that numerical stability is an issue when applying the standard formula for the
roots of a parabola. Distinguish cases to achieve a cancellation-free implementation, see .
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Q Implement a function
/ Eigen::Vector2d GloballInverseQuad (
Eigen::Matrix<double, 2, 4> vertices,
Eigen::Ve r2d X);

accepting the arguments

e vertices, a matrix passing the coordinates of the vertices of a planar quadrilateral K in its

columns,

e x, the coordinates of a point x in the plane.
The function should return the coordinates of the pre-image X of x under the bilinear mapping
@y : K — K, see [Lecture — § 2.8.2.2], where K is the unit square.
The returned coordinates need not be located inside K, which indicates that x ¢ K. However, there can
also be cases, where x ¢ K does not have a pre-image. Then the function should terminate with an error.
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6 Based on the Googletest framework implement a C++ function

void testGlobalInverseQuad
const 1f::mesh::Entity &quad,
Eigen::Vector2Z2d xh);

which can be used to create a unit test for the function GlobalInverseQuad (). The argument quad
should pass an LEHRFEM++ mesh entity of topological type QUAD, the vector xh gives the coordinates
of ¥ € K to be used for testing.

Rely on the EXPECT_NEAR () macro to test the correctness of the result of Global InverseQuad ().

C++11 code 3.3.11: Sub-problem (3-3.9): Implementation of testGlobalInverseQuad()
= GITLAB

2 |void testGloballnverseQuad (const If ::mesh:: Entity& quad, Eigen::Vector2d xh)
{

3 LF_ASSERT_MSG(quad.RefEl() == If ::base:: RefEl::kQuad() ,

4 "Cell must be a quadrilateral");

5 // get the coordinates of the corners of this cell

6 If ::geometry :: Geometryx geo_ptr = quad.Geometry() ;
7

8

9

auto vertices = |f ::geometry::Corners(xgeo_ptr);
// Image of point in unit square under parametric mapping
Eigen::Vector2d x = geo_ptr—>Global(xh);

1 Eigen::Vector2d xh_comp = PointEvaluationRhs:: GloballnverseQuad (vertices ,
X);

12 EXPECT_NEAR((xh — xh_comp). (), 0.0, 1.0E-8)
13 << "quadl " << quad << ": Mismatch xh = " << xh << ", x = " << X
14 << ", xh_comp = " << xh_comp << std::endl;
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In the file pointEvaluation.cc implement a class DeltaLocalVectorAssembler fitting
ﬁ / LEHRFEM++'s concept of an ENTITY_VECTOR_PROVIDER for the the computation of the element

vector associated to the specific right-hand side of (3.3.1).

The core task is to complete the code for the Eval () method of the DeltaLocalVectorAssembler class.

The method should check whether 0 belongs to the passed cell and then compute the corresponding

values using linear Lagrangian finite elements.
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K / Write a C++ function (in the file norms. cc)

double computeL2normLinearFE (
const 1f::assemble::DofHandler &dofh,
const Eigen::Vve rXd &mu) ;

that approximately computes |1, | 12(qy) for afinite element function 1, € S 0(M), M a hybrid mesh with
straight edges.
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Z function (in the file norms. cc)

/ double computeHlseminormLinearFE (
const 1f::assemble::DofHandler &dofh,
const Eigen::Ve rXd &mu) ;

that approximately computes |11;,\H1 ) for afinite element function u, € SO(M), M a hybrid mesh with
straight edges. The argument dofh glves the local—global index mapping for S]O(M), whereas mu
passes the basis expansion coefficients of u,.
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Copying the relevant parts of the function lecturedemoDirichlet()  from
examples/lecturedemos/lecturedemoassemble. cc =* GITHUB create a function

a(u,v)c[/o/)\> Yoe |/
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std::pair<double,double> / y <
normsSolutionPointLoadDirichletBVP ( O [—,é).( ! ﬁéﬂ /ﬂ A ) — —'-é //M 7
const 1f::mesh::Mesh &mesh); ( / i h i ()
that solves (3.3.1) on the domain covered by the mesh stored in mesh and by means of lowest-order —> T o* %/ ,k —=> o&

Lagrangian finite elements. It should return the LZ(Q)-norm and Hl(Q)-seminorm of the finite element
solution uj, € S(M).
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