@D

ETH Lecture 401-0674-00L Numerical Methods for Partial Differential Equations

Homework Problem Video Tutorial
Problem 2-10: Projection onto gradients

Prof. R. Hiptmair, SAM, ETH Zurich

Date: March 2, 2019
(C) Seminar fir Angewandte Mathematik, ETH Zlrich

Needed = Lechne 77 = |t

[v pmz///imlm 2724
Also « Set 245

u—argmm] /||f —grad v(x x)||* dx . (2.10.1)
ve Hy(QQ)

4 EWUJ//&VMZ L UP m

Fly] = [& //j/zz\oy(v//gw 2Ll) pad v + 2l ke

al) 4
a(u,) 7{/ @)ﬂ/ﬂg/{,’/é/vé/)(/) :ﬁﬂfﬁyﬁ/p&%{

u € H}(Q): /Qgrad u(x)-gradv(x)dxz/Qf(x)-gradv(x)dx Yoe HY(Q) . (2.10.5)

b / Exislunce A %MW@S m

87 PE lngl. aly-) spd
: () wmf awr b], by iy Sk

/
sz;-g/ﬂ&(v&(»{ =3 /f/é/a ' //j%”{”/ée

L_,-ﬂ/\——"
= “”//V/&z

£erip)

”m/y%o wlely of £ ad u, £ £ = £ -4
oty o

£ F%x 1, [eﬂé%}

m
= f gzm/a' (ffjm//%) X = O
A

becawne of (2.10.S) wit) v:f//é/%;@)

émfx . oo

Fy (2005): Aivf =0 2 uz= O
/ ,éé(ﬂ

Fint . &wm&r el v L)
m U) = [F-gudvds
~~/m%>w/;<+f S
~fdwf-mf« 0w vetilE)
0 2 Ao £ O

Fov (2035) + wu=0 <& 7 =0

) s local W“&(p//zh/ wle /b/gg%

/K o(x)dx ~ [K|o(c) , (2.10.7)
where c is the center of gravity of the triangle K: ¢ = %(a1 + a® + a®), if K has the vertices a’, i = 1,2, 3.

Implement a class ElementMatrixProvider compatible with the concept of ENTITY_MATRIX_PROVIDER
as discussed in connection with [Lecture — Code 2.7.4.23] that computes the element matrices for the
left-hand side bilinear form of the linear variational problem found in Sub-problem (2-10.a) based on linear

Lagrangian finite elements on flat triangular cells.

C++11 code 2.10.8: Sub-problem (2-10.e): Builder class for element matrix => GITLAB

2 |class ElementMatrixProvider {

private:
using coord_t = Eigen::Vector2d;

public:
Eigen:: Matrix3d Eval(const If ::mesh:: Entity &entity);

7
8 bool isActive (con If ::mesh:: Entity &entity) const { return true; }
}.

wwjﬁ’memﬁw/ﬂ,%vm%ﬂé(

C++11 code 2.10.9: Computation of element matrix for Sub-problem (2-10.e) =* GITLAB

o [Eigen::Matrix3d ElementMatrixProvider ::Eval(const If ::mesh:: Entity &entity) {
3 | const If ::geometry::Geometry xgeo_ptr = entity.Geometry() ;
+ | Eigen::Matrix3d loc_mat;

6 | /* BEGIN_SOLUTION #/
1| // get area of the entity
s | const double area = If ::geometry::Volume(xgeo_ptr);

o | LF_ASSERT_MSG(If ::base::RefEl::kTria() == entity.RefEl(),
i "Function only defined for triangular cells");

s | const Eigen::MatrixXd corners = If::geometry::Corners(xgeo_ptr);
w| // calculate the gradients of the basis functions.

5| // See |[Lecture — Code 2.4.5.11|, [Lecture — Code 2.4.5.13 for

details.
6 | Eigen::Matrix3d grad_helper;

v | grad_helper.block(0, 0, 3, 1) = Eigen::Vector3d::Ones();

© [grad_helper.block(0, 1, 3, 2) = corners.transpose();

w| // Matrix with gradients of the local shape functions in its columns
» | const Eigen::MatrixXd grad_basis = grad_helper.inverse().block(1, 0, 2, 3);
: N
» | loc_mat = area x (grad_basis.
s | /+ END_SOLUTION #/

« [return loc_mat;

% |}

() * grad_basis);

Vo
1z] &' -

IS / Fromedo. @y elanent vectzy

From [Lecture — Code 2.4.5.11] we learned that it is easy to obtain a matrix G < R>?, whose columns
contain the gradients of the barycentric coordinate functions A;, £ = 1,2, 3, for a triangle K.

Based on G, find a formula for the entries of the element vector [Lecture — Def. 2.7.4.5] with respect to
the finite element space S;'(M) for a general triangular cell K with al, i = 1,2,3. Employ (2.10.7). The
vector field f and the area |K| of the triangle may also be used in the expressions.

L) = L6 gradvle] Ax
Mot With (el rm%p%h/ rvle
(), = £lc)-gudd, -1k
c =hlal+aita,)
>, = K & pe) (7

Realize a class GradProjRhsProvider according to the concept ENTITY_VECTOR_PROVIDER as intro-
/ duced in [Lecture — Code 2.7.4.28].

template <typename FUNCTOR>
class GradProjRhsProvider ({
public :
// Constructor: initialization of functor data member
explicit LinFEElemVecProvider (FUNCTOR f) : f£_ (£f) {1}
virtual bool isActive(const 1f::mesh::Entity & /#xcell=/) { return
true; 1}
Eigen: :Ve
private:
FUNCTOR f_; // Functor object for vector field £
};
Here FUNCTOR must provide an evaluation operator that returns an object that behaves like an
Eigen::Vector2d.

I Eval (const 1f::mesh::Entity &tria);

C++11 code 2.10.11: Solution code for Sub-problem (2-10.g) =* GITLAB

27

28

template <typename FUNCTOR>
Eigen::Vector3d GradProjRhsProvider<FUNCTOR>:: Eval(
const If ::mesh:: Entity &entity) {
Eigen:: Vector3d loc_vec;

const If ::geometry:: Geometry xgeo_ptr = entity.Geometry() ;

/* BEGIN_SOLUTION x*/
// get area of the entity
const double area = If ::geometry::Volume(xgeo_ptr);

LF ASSERT MSG(If ::base:: RefEl::kTria() == entity.RefEl(),
"Function only defined for triangular cells");

// calculate center of mass
const Eigen::MatrixXd corners = |f ::geometry::Corners(xgeo_ptr);
const coord_t ¢ = corners.rowwise().sum() / 3.;

// value of the functor f at center of mass of the entity
const Eigen::Vector2d func_value = f_(c);

// calculate the gradients of the basis functions

Eigen:: Matrix3d grad_helper;

grad_helper.block(0, 0, 3, 1) = Eigen::Vector3d::Ones() ;
grad_helper.block(0, 1, 3, 2) = corners.transpose() ;

// vector of the gradients of the basis function evaluated at c

const Eigen::MatrixXd grad_basis = grad_helper.inverse().block(1, 0, 2, 3);

N
() * func_value); Z—= é;Z/)

loc_vec = area x (grad_basis.
/* END_SOLUTION */

return loc_vec;

) (e

% Taking the cue from [Lecture — Code 2.7.6.19] implement a C++ function

termplate <typename FUNCTOR>
Eigen: :Vec

&dofhandler,
FUNCTOR f);

which computes the vector of nodal basis gxpansion coefficients of the finite element Galerkin approxima-

tion u;, € 87, (M) of the solution of (2.10{1).

The argument dofhandler passes a LEHRFEM++ DofHandler object, for details refer to [Lecture —
§ 2.7.4.13]. Through this object the mesh can be accessed as well. The other argument £ contains a

functor object providing f in procedural form.

\/ ,
olye disodde LP 0\(7'1/704 S/,é /(/%/

VU e b mpose. fomoganion?
v Dinchict b.c,

torXd projectOntoGradients(const 1f::assemble::DofHandler

C++11 code 2.10.12: Function projectionOntoGradients for Sub-problem (2-10.h)

=> GITLAB

2 // ASSEMBLE GLOBAL MATRIX

3 /% BEGIN_SOLUTION #*/

4 If ::assemble :: COOMatrix<double> A(N_dofs, N_dofs) ;

5 ProjectionOntoGradients :: ElementMatrixProvider my_mat_provider;

6 // co—dimension 0 because we locally assemble on cells

7 If ::assemble :: AssembleMatrixLocally(0, dofh, dofh, my_mat_provider, A);
8 /% END_SOLUTION */

9 // ASSEMBLE GLOBAL RHS VECOR

10 /* BEGIN_SOLUTION */
11 Eigen :: VectorXd phi(N_dofs) ;
12 phi.setZero() ;

13 ProjectionOntoGradients :: GradProjRhsProvider my_vec_provider(f) ;

14 // co—dimension 0 because we locally assemble on cells

15 If ::assemble:: AssembleVectorLocally (0, dofh, my_vec_provider, phi);

16 /* END_SOLUTION */

17 // ENFORCE HOMOGENEOUS DIRICHLET BOUNDARY CONDITIONS

18 /* BEGIN_SOLUTION */

19 // We do this by selecting the DOFs on the boundary and setting the

20 // values to zero. Note, that we could also use this to set the
boundary

21 // to any other value (if bc were not homogeneous)

22

23 // To select the right DOFs we need a selector:

24 // * for all DOFs on the boundary return true and the value on the
boundary

25 // * for all other DOFs return false (and whatever as value)

26 const double boundary_val = 0;

27 auto bd_flags{If ::mesh:: utils :: flagEntitiesOnBoundary (dofh.Mesh() , 2)};

28 auto my_selector = [&dofh, &bd_flags, &boundary_val](unsigned int dof_idx)

{

42

/* END_SOLUTION =/

43

29 if (bd_flags(dofh. Entity (dof_idx))) {

30 return (std::pair<bool, double>(true, boundary_val));

at } else {

a2 // the number we return here does not matter

a3 return (std::pair<bool, double>(false, 42));

% }

35 };

36 // Since we know the values on the boundary we know the solution on

wl // Egggeand we can write the Galerkin LSE in block format and solve
onl

ml /S forvthe unknown coefficients. This modification is done by the
following

wl // function fix flagged solution components(). We use the selector
we have

40 // defined above.

41‘ // See [Lecture — Section 2.7.6| for explanations.

If ::assemble :: fix_flagged_solution_componenis<double>(my_selector, A, phi);

P/ Y iy 607& fast
As we saw in Sub-problem (2-10.d), for the divergence-free vector field

f(x) = l_"Z] , x= ["1] , divf=0,

(2.10.13)

we can expect u;, = 0, where uy, € S?,O(M) is the finite element Ritz-Galerkin solution of (2.10.1).

Using the facilities of GOOGLETEST implement a unit test
TEST (homework_pog,div_free_test) { ... }

that uses f from (2.10.13) to test the correct
projectOntoGradients () from Sub-problem (2-10.h).

implementation

C++11 code 2.10.14: Unit test for Sub-problem (2-10.i) = GITLAB

or

the

= | TEST(GradProjection, div_free_test) {
3 /* BEGIN_ SOLUTION =/
4
5 // Initialize all objects we need for our test case
6 const auto f = [](Eigen::Vector2d x) — Eigen:: Vector2d {
7 return Eigen:: Vector2d(—x(1), x(0));
8 }:
) auto mesh_p = If ::mesh::test_utils :: GenerateHybrid2DTestMesh(3) ;
10 // DofHandler for the p.w. linear Lagrangian finite element method
1 If ::assemble :: UniformFEDofHandler dofh(mesh_p,
12 {{If ::base :: RefEl :: kPoint(), 1},
13 {If ::base :: RefEl :: kSegment(), 0},
14 {If ::base:: RefEl:: kTria (), 0}}):
15 // Compute solution
16 const Eigen::VectorXd sol_vec =
17 ProjectionOntoGradients :: projectOntoGradients(dofh, f);
18
19 // As stated in the exercise, we would expect the solution to be
20 S/ ggggé we check every entry if its (numerically) zero.
21 // The GoogleTest framework provides a function we may use:
22 / * EXPECT_ NEAR(value 1, value 2, max. difference) x*/
23 const double eps = 1e—15;
24 for (std::size_t i = 0; i < sol_vec.size(); ++i) {
25 EXPECT_NEAR(sol_vec([i], (0.0, eps);
26 // Try testing for equality, you’ll see it will fail miserably!
27 /* EXPECT EQ(sol_vec(i], 0.0); */
28 }
29 /* END_SOLUTION x*/
30
}

function

@?/ £ @W////h;f 2
L o1p éjw/é;ﬁ ()

(4/ ,,MWL‘/;S% %v £ é@%ﬂ/S,IZ/W)

® 2 - >
h 411 4 1' 1 [T
' 20} i rek,
- T
02} it xeky,
- 1T
-2 2 ,If XEK4,
_ - ZT
Y2 0] Lif x€Ky,
- ZT
0 -2 ,if xeKg,
- ZT
2 -2| ,if x€Kjs,
0 elsewhere.

£ = gud b

A

(2.10.16)

’% ’
Z)ég//& @(&fﬁm af

NumPDE@ETHZ

