—ETHTOCIIe 201=06724-00C NUTeTica Metous for Partiat Differemtiat Equations

Homework Problem Video Tutorial

Problem 6-1: Implicit Two-Stage Radau
Runge-Kutta Single-lslé%pPMethods for Parabolic
S

Prof. R. Hiptmair, SAM, ETH Zurich

Date: April 19,2019
(C) Seminar flr Angewandte Mathematik, ETH Zirich

- headt sovree

va &T@% i — Au = (x,t) in 0x]0,1[,
u=>0 on 90 x10,1], kphﬁcﬂz 1eaet’) (6.1.1)
u="0 on Q) x {0}, " <
1 . if H _ 1 cosmt H < l,
flx,t) = Flx = 2l < 2 (6.1.2)
0 elsewhere.

Appoach: M0L + | (1) ~slable RE-SSM
a, Spa ol yamaionad. fmedation

Tot with v e HI(G) + /)0726/50?? s zb)z?

o (0, T] — H (R)

/aal;(dx-l—/ grad u(x, 1) - r1du\|dt—/f x)dx (6.1.4)

/FWM a paamiden 4/7[7%45‘ @b?(</ 7%[52)

b

/ Derive the discrete evolution operator as introduced in [Lecture — Def. 6.2.6.2] for the 2-stage Radau
method, a Runge-Kutta single-step method (RK-SSM) defined by the Butcher scheme

1
Tz_ﬁ
21'
E:

A 3

ﬂf’[féc—&) e =

when applied to the linear scalar ordinary differential equation y = —y.

—

[Lecture — Eq. (6.2.7.52)]

Definition 6.2.6.31. General Runge-Kutta method —

For coefficients b, a;; € R, ¢; 1=

k; := f(f—l— cr,u+T Z(l,]k]) p
j=1

The k; € V) are called increments. /

Z;:la,-j, 1,] s 1,...,
s-stage Runge-Kutta single step method (RK-SSM) for the ODE u = f(f, u), is defined by

i=1,...

s, s € IN, the discrete evolution ¥*! of an

S
5, YT Tui=u+1) bk;.

m@# ewlah;h 5}0

/ w%n%ﬁf é?&(d/f'm

MOL - ODE

M{ fii(t) |+ Al(H) =@ & ji=M"' @) - Aji(t) (7.1.4.4)
—£(tji)
LSE fr incremenic
K1 P(tj +c17) — Al
(71.7.7) & (LOMATARA)| | = : (6.2.7.9)
7\ /]‘ Ks P(tj +csT) — Al
Kioneoker product
ey =
T M 615
Kp = —Y — T%Kl — Tle . (6.1.6)

-+

y(]+1) = }/1)4' T§K1 + TlKZ

4 +
(1o T+ oL
1+t3)+H+% /)
|- ——

—____

PN /27V~1>,6+77 /Y

A, = MMaxinad erioy ovew all Am??f)s

é my | error 54 estimated rate
4 10 | 520365605 | * jo& &L/Z
P 20 | 6.86977e-06 | 2.92119
40 | 8.84939¢-07 | 2.95661
: 80 | 1.12381e-07 | 2.97718 A 609/ 54*
; 160 | 1.41621e-08 | 2.98829 N U e
l 320 | 1.77756e-09 | 2.99407
640 | 2.22655e-10 | 2.99701
j 1280 | 2.78612e-11 | 2.99848
2560 | 3.48362e-12 | 2.9996 4 /Z(/Z? - - W\/ -
5120 | 4.36833e-13 | 2.99543 3 £ — 3

@ @/ o?fﬁ(af(Qﬂd%& %C/CZ/ 6770&0/407) (gv /&/éZ’ﬁﬂE ’p/ Using the LEHRFEM++ library, in the file radau_three_timestepping.cc implement a function

Eigen::VectorXd rhsVectorheatSource (Com %
const 1f::assemble::DofHandler &dofh, == L/>/’é)
%1 <_[3(f] 1 ClT) o Aﬁ(}) double time);
P AN | o . that computes the right-hand- S|de vector arising from the SO Galerkin finite element discretization
(71.7.7) & (Lo@+@RA)| | = : NE (6.2.7.9) of the linear functional v — [, f(x,t) dx on the right-hand- snde of the spatial variational formulation of
K (_f)(f]- + CST) — Aﬁ(l) (6.1.1), where f(x,t) is given by (6.1.2). As usual, the argument dofh supplies information about the

mesh and the local-to-global index mapping. Of course, local quadrature should has to be employed and
we opt for the 2D trapezoidal rule

2 ot + 1 71 () $V(K)
[M + TIZA i 12A j| [fll _ (P(f + T) AH . (6.1.15) /lp(x)dxg K] 'S P(ak) (6.1.17)
T:IA M-I-T;IA q)(t +T) ﬁ(] JK V(K) =

for a cell K € M with vertices ag, .. ., aﬁi(v(K) and area |K]|.

4 / / As part of the specification we demand that all entries of the return vector corresponding to basis
@ M 7L 2 4 2 @ /4 functions associated with nodes on d() are zero.
/%

- -) = L Pl)47 Wew D)
=3 M@ “'/487 A / &m’) %ﬁﬂ é}(‘ %/M ’&3}

class Radau3MOLTimestepper {

public:
Radau3MOLTimestepper () = delete; D { LtW ZLV‘{%OH W {//ik%
Radau3MOLTimestepper (const Radau3MOLTimestepper &) = delete; m/D W) mém
Radau3MOLTimestepper (Radau3MOLTimestepper &&) = delete; /

Radau3MOLTimestepper &operator=(const Radau3MOLTimestepper &) =

delete; /ULK&{ ' V 7@? P?P U ﬁE}Q
Radau3MOLTimestepper &operator=(Radau3MOLTimestepper &&) = delete; : F%/ T/ 7_\/ Ec — 0

explicit Radau3MOLTimestepper (

const 1f::assemble::DofHandler &dofh);
virtual ~Radau3MOLTimestepper() = default;
3¢ discreteEvolutionOperator (double tau, double time,
const Eigen:: rXd &mu) const;

// plus approprlate data
}i

/

C++ code 6.1.19: Sub-problem (6-1.f): Eval () method returning element vector => GITLAB

2 |template <typename FUNCTOR>

s | Eigen::Vector3d TrapRuleLinFEElemVecProvider<FUNCTOR>:: Eval (
4 const If ::mesh:: Entity &tria) {

5 Eigen:: Vector3d ElemVec;

6 /* SOLUTION_BEGIN */

7 // Throw error in case no triangular cell

8 LF VERIFY_MSG(tria.RefEl() == If ::base::RefEl::kTria(),

9 "Unsupported cell type " << tria.RefEl());

10 // Obtain vertex coordinates of the triangle in a 2x3 matrix

11 const auto corners{If ::geometry:: Corners(x(tria.Geometry()))};

12 // Compute the scaling factor for the local load vector

13 const double area_third = If ::geometry::Volume(x(tria.Geometry())) / 3.0;
| LF_ASSERT_MSG((corners.cols() == 3) & (corners.rows() == 2),

15 “Invalid vertex coordinate " << corners.rows() << "x"

16 << corners.cols() << " matrix");

7 | ElemVec = Eigen::Vector3d(area_third % f_(corners.col(0)), E&m 77[\
18 area_third x f_(corners.col(1)),

19 area_third % f_(corners.col(2))); VZMéV
2 | /+ SOLUTION_END */

21 return ElemVec;

2 |} // TrapRuleLinFEElemVecProvider<FUNCTOR>: :Eval

Study the documentation of If::assemble::COOMatrix and try to understand the following function, which
follows the implementation of 1f: :assemble: :fix_flagged_solution_components ().

C++11 code 6.1.21: Function dropMatrixRowsColumns for the isolation of solution com-
ponents

template <typename SCALAR, typename SELECTOR>
void dropMatrixRowsColumns(SELECTOR &&selectvals ,
COOMatrix<SCALAR> &A) {
const If ::assemble::size_type N(A.cols());
LF_ASSERT_MSG(A.rows() == N, "Matrix must be square!");
A.setZero([&selectvals J(gdof_idx_t i, gdof_idx_t j) {
return (selectvals(i).first || selectvals(j).first);
}) s
for (If ::assemble::gdof_idx_t dofnum = 0; dofnum < N; ++dofnum) {
10 const auto selval{selectvals (dofnum) };
1 if (selval.first) {
12 A.AddToEntry (dofnum, dofnum, 1.0);
13 }
14 }
15 |}

© ® N O 0 A 0 N =

[> é&% Zgyﬁ/ ot/ »dzfgmf% oy of selected s /i
RN Cmpmﬂ%gz &Q'{fm% ez — O

by, lnitalization of ~ Kiveolppor: clazo

class Radau3MOLTimestepper

public:
Radau3MOLTimestepper() = delete;
Radau3MOLTimestepper (const Radau3MOLTimestepper &) = delete;
Radau3MOLTimestepper (Radau3MOLTimestepper &&) = delete;
Radau3MOLTimestepper &operator=(const Radau3MOLTimestepper &) =

delete;
Radau3MOLTimestepper &operator=(Radau3MOLTimestepper &&) = delete;

explicit Radau3MOLTimestepper (
const 1f::assemble::DofHandler &dofh);
virtual ~Radau3MOLTimestepper() = default;

Eigen::VectorXd discreteEvolutionOperator (double tau, double time,

const FEigen::VectorXd &mu) const;
// plus appropriate data

};PFECUW)FDZL(£ she Ap, My alln amem
d A M 4 féwm'mg//ﬁ/.mﬂ\m 9e0”

&)

class Radau3MOLTimestepper {

public:
// Radau3MOLTimestepper () = delete;
Radau3MOLTimestepper (const Radau3MOLTimestepper &) = delete;
Radau3MOLTimestepper (Radau3MOLTimestepper &&) = delete;

Radau3MOLTimestepper &operator=(const Radau3MOLTimestepper &) =
delete;
Radau3MOLTimestepper &operator=(Radau3MOLTimestepper &&) = delete;
explicit Radau3MOLTimestepper (
const 1f::assemble::DofHandler &dofh);
virtual ~Radau3MOLTimestepper() = default;

double time,

o /Z7V75,75+T~>

- discreteEvolutionOperator (double tau,
const 28 &mu) const;
// plus appropriate data

bi

T3A M+ TiA| R g(tj+1) — AV
S

s
et e R ™

= then e LSB
7> hay fo be W%M s el 7‘7%%7%?,

YWﬁ (/m‘}%{/m })‘D’L@(ép O W(W&/)

Z)

"y

Visvallze sty af Fnel Dme

R ToR |
[20006

— 2000/

20C02

I 3 Ja-nc

dauaa naal sulion

Elaborate how the implementation of the 2-stage Radau RK-SSM timestepping for the method-of-linear
ODE for (6.1.1) can be made more efficient when a uniform timestep is used.

Y
vt e ¥ fnakins

> n Ahe conolwctr /&MC@/?}DU?% Wﬁ 7‘6%@/
¢ 'O%ULUI%((];Y it

NumPDE@ETHZ

NumPDE@ETHZ

