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’{\/ Implement a LEHRFEM++-based C++ function (in the file sdirkmethodoflines.cc)

std: :pair<Eigen: :SparseMatrix<double>, Eigen::SparseMatrix<double >
assembleGalerkinMatrices(const 1f::assemble::DofHandler &dofh,
double c¢);

that assembles the Sy (M )-Galerkin matrices for the bilinear forms a(-,-) and m(-,-) found in Sub-
problem (6-2.a). The argument do f£h is to provide a hybrid mesh M and information about the numbering
of local and global basis functions. The coefficient ¢ > 0 is given through c.

Your implementation can rely on the LEHRFEM++ library
If::uscalfe::LinearFELaplaceElementMatrix and, ofcourse,on 1 f: :assemble: :assembleMatrix
see [Lecture — Code 2.7.4.23|, which even accepts a co-dimension argument! You will also have to

implement you own slightly extended version of the class LinFEMassEdgeMatProvider from [Lecture —

Code 2.7.4.39].

An alternative is the use of If::uscalfe::ReactionDiffusionElementMatrixProvider with suitable coeffi-

cient functions, see [Lecture — Ex. 2.8.3.28].
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For coefficients b;,a;; € R, ¢; := ij-:l aij, ,j=1,..., s, s € IN, the discrete evolution ¥*' of an

s-stage Runge-Kutta single step method (RK-SSM) for the ODE u = f(t, u), is defined by
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C++11 code 6.2.22: Sub-problem (6-2.k), function thermalEnergy () =* GITLAB
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double thermalEnergy(const If ::assemble:: DofHandler &dofh,
const Eigen::VectorXd &temperature_vec) {
double thermal_energy = 0.0;
/* SOLUTION_BEGIN */
auto mesh_p = dofh.Mesh(); // pointer to mesh
// The thermal energy of the system is defined as the integral of the
// temperature solution over the domain. It is computed for linear
lagrangian
// finite elements using the trapezoidal rule by summing up the
contribution
// of that quadrature rule over each triangle
double thermal_energy_loc;
for (const If::mesh::Entity &tria
thermal_energy_loc = 0.0;
// Compute the area of the triangle
const double area = If ::geometry::Volume(x(tria.Geometry()));
// Obtain the global indices of the nodal degrees of freedom
for (const If ::assemble::gdof_idx_t &g_idx :
dofh :GlobalDoflndices(tria)) {
thermal_energy_loc += temperature_vec[g_idx];
}
// Sum local contribution of quadrature rule
thermal_energy += thermal_energy_loc «‘area / 3.0;
}
/* SOLUTION_END */
return thermal_energy;
} // thermalEnergy

: mesh_p—>Entities (0)) {




[ In the file sdirkmethodoflines.cc implement a C++ function
/

std: :pair<Eigen::VectorXd, Eigen::VectorXxd>
solveTemperatureEvolution(const 1f::assemble::DofHandler &dofh,
unsigned int amp double cool_coeff, [ —= ~ C—:g\)j
Eigen: :Vectordo@nitial temperaturepvesc)

that carries out /11 equal imesteps of the SDIRK-2 in order to solve (6.2.1) over the time interval [0, 1]. The
argument initial_temperature_vec provides the initial conditions for the method-of-lines ODE,
cf. [Lecture — Eq. (6.2.4.4)], the parameter cool_coeff the coefficient ¢ € R. The discretization in
space relies on S} (M)-FEM.

The function should return the basis expansion ocefficient vector of the solution at final time T = 1 and
the “energies” (6.2.25) for times 7j, j = 0,...,m, where T := 1/m is the constant timestep size.
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