@D

ETH Lecture 401-0674-00L Numerical Methods for Partial Differential Equations

Homework Problem Video Tutorial

Problem 6-2: Implicit Timestepping for
Parabolic IBVP

Prof. R. Hiptmair, SAM, ETH Zurich

Date: April 19,2019
(C) Seminar fir Angewandte Mathematik, ETH Zrich

Non - dimenSional heat equealion

d1
a—l; —Au =0 in(x [0,T], (evolution equation)
—gradu-n=cu ondQ x [0,T], (boundary conditions) () 6.2.1)
L u(x,0) = ug(x) inQY, (initial conditions) € =0
>

Convective 50&%}70@ D.c.
a, SZD&O/M/(vamrttional oz hin m
Tel with ve H () //37%7/%% & LoD
w0, T] — H'(R),

Lo ds / du- d-d,—/~ du-ndr=0
./Qua x+ | gradu-gradvdy— [wvgradu-n dx

V)
= /Qz'tv dx + /Qgrad u-grad v dx + /)czw dx=_0 |, (6.2.3)
. : Jog ~~—~
~ ~"~ - ~ ~~ o ((Z’) Vvé’b/l/—ga)

m(1,v) a(u,v)

| o (v, v) T aly,v) = LEN)

sho Tspod

(7] Argue why the total thermal energy [[’)(a/f Cﬂfa%(é/ \(;:_4 7
" {‘Zeﬁﬂ(@nzéméW(, E(t) IZ/QH(X,f) dx, (6.2.4)

decreases with time, if 15(x) > 0 for all x € Q).

& UQ)L?VL(Z(// i tihen ,0(/;((6) = 0O f//?ﬁ;()
C — /Mﬂ/a M /mm/plz £y W%Mc Crliilins /

ﬁ(—E(é) = ,{’jégﬂ&,ﬁ)c/x
- la/&l(x[z‘)//x

[Ut wmiztindl Gpmudlebon with =7]
= ~~cf/0(/xzf AS &) = O

Lf_\KN
=

(£ Uy, = O = 4> Elb) decrecoe

¢, Rdevemt bilineww Forms

cuv dx,

= / grad u - grad v dx +
. JoO

/lt(r)v()dx .
Calvbin FEAT

H— May) m&’cﬁw (6—9 h/l[

Mmg/& <

a(u,v)
>

m(u,v) 1=

Sl
[Jere E[@
//VV\/L

) on

LSE = banvconlic ciotingle onclins 1,25,

1
M, = —

2.
R~ 57 (6.2.6)

e N
N b=

1
2
1
J{/) — /2 elpnt malrx

2 -1

T

1
AIZ:E
-1 0

4 2 N
@dgg ¢ c 9% b e oty

"“A-elomad mdfpe”

’{\/ Implement a LEHRFEM++-based C++ function (in the file sdirkmethodoflines.cc)

std: :pair<Eigen: :SparseMatrix<double>, Eigen::SparseMatrix<double >
assembleGalerkinMatrices(const 1f::assemble::DofHandler &dofh,
double c¢);

that assembles the Sy (M)-Galerkin matrices for the bilinear forms a(-,-) and m(-,-) found in Sub-
problem (6-2.a). The argument do f£h is to provide a hybrid mesh M and information about the numbering
of local and global basis functions. The coefficient ¢ > 0 is given through c.

Your implementation can rely on the LEHRFEM++ library
If::uscalfe::LinearFELaplaceElementMatrix and, ofcourse,on 1 f: :assemble: :assembleMatrix
see [Lecture — Code 2.7.4.23|, which even accepts a co-dimension argument! You will also have to

implement you own slightly extended version of the class LinFEMassEdgeMatProvider from [Lecture —

Code 2.7.4.39].

An alternative is the use of If::uscalfe::ReactionDiffusionElementMatrixProvider with suitable coeffi-

cient functions, see [Lecture — Ex. 2.8.3.28].

class

& pliaf 2 @Z’(ff Rlo-SH . SDiPl- 2
o A A 0 1
3 2 1|l=A AL, A:=1-1V2. (6.2.8)

[T-2 A

For coefficients b;,a;; € R, ¢; := ij-:l aij, ,j=1,..., s, s € IN, the discrete evolution ¥*' of an

s-stage Runge-Kutta single step method (RK-SSM) for the ODE u = f(t, u), is defined by

, Y Tui=u+1 t bk; .
/) =
[\— Aol exdintin a0aly)

g, SPRIE-2 foy :Ff/y)
L scalarr eav ODE 7] m

inoement equt -
= —yY — YTAKy,
Ky = —qy — yT(1 — A)Ky .yTAK

J> K1 =

yU+) — /(1) + (1 — Ak + TAK

k; _ft+aru+TZa,] 4
=1

The k; € V) are called increments.

A NG =

=

—Y

=y +29TA —77)
1+ 9tA’ -

(1+vTA)?

(6.2.9)

(6.2.10)

”

T (1 + ’yT/\2

Z
0
.ﬂ
K

’ /MW% W o SORI2 RK-S547
\0// 2. . oz

Mecled f?ﬁb[ém ‘. =y o (2] oy = T
m,
ftimesteps | error £, | estimated rate A Zf C—Z%
10 0.000446558 >
20 0.000110501 | 2.01478 Eo = C mg
40 2.74922¢-05 | 2.00697 — .
80 6.856966-06 | 2.00338 @f fe = (Oﬁ[(o< &37 e
160 1.712260-06 | 2.00167 p
320 4.2782¢-07 | 2.00083 / P /
640 1.06924e-07 | 2.00041 C%/“ X Z@%
1280 2.67273¢-08 | 2.00021
2560 6.68136e-09 | 2.0001 z
5120 1.67028¢-09 | 2.00005 v _ log 44
(% &% 2
fran s
~ Y

4, Show < SDIRI-2 s Llr) ~sk bl

——

/7

(1 e ’)’T/\)2

—z(1 — zA?
& @@ =1- (21(—;)2)

s Stbtify fnchon

Y7(1+77A?)
(1+97A)2

|

S(—1y) = (1 - (6.2.16)

@ (S £, Yaz =V

Uny S(=) m 7

= D =P

L) ~clable ==

—
——

DIPK -2 B UOL-0DE

al

M{gii(t) } +Afi(H) = §(t) & ji =M (@(t) - A(1)) - 7144
=£(1)

wpiltf Ri-SSH Frpecles
nerement egmczﬁ'ops [SE

K1 g_b(f] + C]T)
(Is OM+TAR A) —

ﬂ\ /}\ Ks P(t; +cs T)
renecter prdilct of pdhices

_ Aﬁ(j)

(7.1.7.7) (6.2.7.9)

=
—Aﬁ(j)

—Aﬁ(j) ,
—Aﬁ(j) .

MT—C‘I + T/\Al?l (6 > 19)

Mk, + T(l — /\)AR] + TAAK) =

4 %\c&zﬂw% [SE

C++11 code 6.2.22: Sub-problem (6-2.k), function thermalEnergy () =* GITLAB

© ® N o A~ W N

double thermalEnergy(const If ::assemble:: DofHandler &dofh,
const Eigen::VectorXd &temperature_vec) {
double thermal_energy = 0.0;
/* SOLUTION_BEGIN */
auto mesh_p = dofh.Mesh(); // pointer to mesh
// The thermal energy of the system is defined as the integral of the
// temperature solution over the domain. It is computed for linear
lagrangian
// finite elements using the trapezoidal rule by summing up the
contribution
// of that quadrature rule over each triangle
double thermal_energy_loc;
for (const If::mesh::Entity &tria
thermal_energy_loc = 0.0;
// Compute the area of the triangle
const double area = If ::geometry::Volume(x(tria.Geometry()));
// Obtain the global indices of the nodal degrees of freedom
for (const If ::assemble::gdof_idx_t &g_idx :
dofh :GlobalDoflndices(tria)) {
thermal_energy_loc += temperature_vec[g_idx];
}
// Sum local contribution of quadrature rule
thermal_energy += thermal_energy_loc «‘area / 3.0;
}
/* SOLUTION_END */
return thermal_energy;
} // thermalEnergy

: mesh_p—>Entities (0)) {

[In the file sdirkmethodoflines.cc implement a C++ function
/

std: :pair<Eigen::VectorXd, Eigen::VectorXxd>
solveTemperatureEvolution(const 1f::assemble::DofHandler &dofh,
unsigned int amp double cool_coeff, [—= ~ C—:g\)j
Eigen: :Vectordo@nitial temperaturepvesc)

that carries out /11 equal imesteps of the SDIRK-2 in order to solve (6.2.1) over the time interval [0, 1]. The
argument initial_temperature_vec provides the initial conditions for the method-of-lines ODE,
cf. [Lecture — Eq. (6.2.4.4)], the parameter cool_coeff the coefficient ¢ € R. The discretization in
space relies on S} (M)-FEM.

The function should return the basis expansion ocefficient vector of the solution at final time T = 1 and
the “energies” (6.2.25) for times 7j, j = 0,...,m, where T := 1/m is the constant timestep size.

I iy ﬁmwchmﬁm o sohe

M#; + TAAR; = —AjY) |
M#, + (1 — A)AR; + TAAR, = —AjY) .
> Tuw NN LSEs | A =din)
with the same Syskea toabex M fﬁ#
[Fhe same Gv ald ﬁmz&/é] oo

= %/)Z(/% 'ent 7% é/&w/)m&%j@/f% @ﬁp

(6.2.19)

>

I—'I/c 0z

I

-1

h....
SNaTloriald b coled clne B T2,

asaEaa lsrosralas sl

NumPDE@ETHZ

NumPDE@ETHZ

