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Lemma 2.7.5.5. Integration of powers of barycentric coordinate functions

For any non-degenerate d-simplex K with barycentric coordinate functions A1,
nents o € N,j=1,...,d+1,
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Implement the function

double IL2Error (const TriangularMesh2D& mesh,
const Eigen::VectorXd& uFEM,

const std::function<double (double, double)> exact);

]

to compute the error |1, — i/, (), where u is the exact solution to (2.5.1), passed through the function

handle exact, and uy, Q/FS’\?(M) is the finite element Galerkin solution passed through its coefficient
vector uFEM with respect to the customary basis of tent functions. The argument mesh contains the
mesh data structure.
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Q/ Implement the function
/ double HlSerror (const TriangularMesh2D& mesh,
ukFEM,

const Eigen::VectorXdé&

const std::function<Ei
exact) ;

r2d (double, double) >

jen: :Vect
to compute the error norm |, — ”‘H'\U;" where u is the exact solution of (2.5.1), whose gradient is

passed in the function handle exact (that returns a column vector), and 1, € S?(M) is the finite element
Galerkin solution, passed through the coefficient vector U. The input argument Mesh contains the mesh
data structure.
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C++ code 2.4.5.11: Computation of gradients of barycentric coordinate functions on a trian-
gle — GITLAB

2
grad uy,(ay) — grad u(ay) ) :

Eigen :: Matrix<double, 2, 3> gradbarycoordinates(const t_TriGeo& Vertices)
{
/S Argument Vertices passes the vertex positions of the triangle
// as the rows of a 3 X2-matrix, , see Code 2.4.1.3..
S/ The function returns the components of the gradients as the
// columns of a 2 X 3-—matrix

// Computation based on (2.4.5.10), solving for the

/S /S coefficients of the barycentric coordinate functions.
Eigen :: Matrix<double, 3, 3> X; // Temporary matrix
X.block<3, 1>(0, 0) = Eigen::Vector3d::Ones() ;

X.block<3, 2>(0, 1) = Vertices.transpose () ;

return X.inverse () . block<2, 3>(1, 0);
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Implement a function

std :: tuple<Eigen:: VectorXd, double, double>
solve (const TriangularMesh2D& mesh);

that, given in input a mesh data structure me sh, computes the discrete solution 1, € S?(M) to (2.5.1)
in the case that the exact solution i$ u(x) = cos(27txy ) cos(27xs ), plots the mesh and 1;,. The function
returns the coefficient vector U of u;,, the L-norm and the (approximate, due to quadrature) H!-seminorm
of the discretization error 1 — 1,

You can rely on the functions assemlLoad LFE() and GalerkinAssembly () given in the file
simple_linear_finite_elements.cc. Those implement cell-oriented assembly according to
the “distribute scheme”, see [Lecture — Code 2.4.6.8] and [Lecture — Code 2.4.5.23].
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