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Theorem 1.9.0.10. Multiplicative trace inequality
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Theorem 1.8.0.20. Second Poincaré-Friedrichs inequality
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Based on [Lecture — Thm. 3.3.2.21], qualitatively and quantitatively predict the asymptotic behavior of
the error norm [u — 1 interms of N = dim 8 (M;) for N; = .
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Theorem 3.3.2.21. Error estimate for piecewise linear interpolation

For any u € C?(Q)) and 2D piecewise linear interpolation 11 : CO(QY) — S (M), M a triangular

mesh, holds
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where h a4 denotes the mesh width (— Def. 3.2.1.4) and paq the shape regularity measure (—
Def. 3.3.2.20) of M.
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Employ the duality techniques introduced in [Lecture — § 3.6.3. 3] to derive a sharp asymptotic estimate
forthe ertor norm | — 1 2. as N; := dim &} (M;) =

Theorem 3.6.1.7. Duality estimate for linear functional output

Define the dual solution gr € Vo/_tg F as solution of the dual variational problem
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In the setting of the previous sub-problem, what asymptotic behavior can be deduced from the multiplica-
tive trace inequality [Lecture — Thm. 1.9.0.10] for the error norm |1 — 13| 25 on the boundary in terms

of N; := dim &) (M;) = o0?

Theorem 1.9.0.10. Multiplicative trace inequality

AC=C(0) >0 [ullfzpn) < Clullizqy - el YueH(Q).

|lu — lli“iZ(aQ) < ng“u — Uil ) < C1C2C3N,-_3/2\ll\';}2(g)-
olhy) Ol ) .
1 = will 200y < Caltd?|uli2r) = O = O [V, /7)
B(v) v AdS

I

In the file tee_lapl_robin_assembly.cc (name due to historical reasons) implement an
LEHRFEM++-based function

—
-—

double bdFunctionalEval (
std : : shared_ptr<lf::uscalfe::FeSpacelLagrangeOl<double>>s& fe_space,

Eigen::VectorXd& coeff_vec);

that computes B(vy,) := [, 0, dS(x), where v, < S/ (M) and its basis expansion coefficients are

passed through coeff_vec. The argument fe_space also passes information about the (planar trian-
gular) mesh M and the “d.o.f. handler” for the finite element space.
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C++11 code 3.5.15: Sub-problem (3-5.i): function bdFunctionalEval () = GITHUB

© ® N O 0 & @O N

double bdFunctionalEval (
std :: shared_ptr<If :: uscalfe :: FeSpacelLagrangeO1<double>>& fe_space,
Eigen :: VectorXd& coeff_vec) {
double bd_functional_val = 0;

/* SOLUTION BEGIN »/

// Reference to mesh

std :: shared_pir<const If ::mesh::Mesh> mesh_p{fe_space-—>Mesh() };

// Obtain local—->global index mapping for current finite element space
const If ::assemble:: DofHandler& dofh{fe_space-—>LocGlobMap() }:

// Obtain an array of boolean flags for the edges of the mesh: ’true’

// indicates that the edge lies on the boundary. This predicate will
guarantee

// that the computations are carried only on the edges of the mesh.

auto bd_flags{If ::mesh:: utils :: flagEntitiesOnBoundary (mesh_p, 1)};

// Creating predicate that will guarantee that the computations are carried
// only on the edges of the mesh using the boundary flags

auto edges_predicate = [&bd_flags](const If ::mesh:: Entity& edge) — bool {
return bd_flags (edge) ;

}s

// Computing the integral of function vec on the flagged edges
double edge_length;

for (const If ::mesh:: Entity& edge : mesh_p—>Entities (1)) {
if (bd_flags(edge)) {
// Obtain endpoints of the edge
auto endpoints = If ::geometry::Corners (*x(edge.Geometry())):
LF_ASSERT_MSG(endpoints.cols () == 2, "Wrong no endpoints in " << edge);

// Compute length of the edge

edge_length = (endpoints.col(1) — endpoints.col(0)).norm() ;

// Find the endpoints global indices

auto dof_idx = dofh.GlobalDoflndices(edge) ;

BOOST_ASSERT (dofh. NoLocalDofs (edge) == 2);

bd_functional_val +=
(coeff_vec.coeff(dof_idx[0]) + coeff_vec.coeff(dof_idx[1])) =
edge_length / 2.0;

}
}

/% SOLUTION_END */
return bd_functional_val;
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N = dimension of FE space

Prove that for the linear functional v — B(v) as defined in (3.5.14) holds
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B(1) = / f(x)dx and B(u,) =173,  (8517)
JO s 2 = @Mﬂﬁ)afa
where 1 € H'(Q)) is the exact solution of (3.5.1), 1, € S)(M ) the finite element solution, and ¢ € RY,
N := dim §)(M), is the right-hand-side vector of the Galerkin linear system. The symbol 1 stands for
the vector € RN with entries all = 1.
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