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Homework Problem Video Tutorial
Problem 3-5: Error Estimate for Traces
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Theorem 1.8.0.20. Second Poincaré-Friedrichs inequality

IC=C(Q) >0: |ul, < C diam(Q)|gradul, Yuc H(Q).

Theorem 1.9.0.10. Multiplicative trace inequality ) é (;
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1)+ 10:llt200) by do/”/ 11 B &5

[Lecture —\J'hm. 1.9.0.10] 5
< |v*|H1(Q) + Cllvxl 2 |04 | 1)

(3.5.7)

[Lecture — Thm. 1.8.0.20] , 9 ) 9

7 .

- [ £@+0.) dx < D fllza (8120 + o+ 2

0

N (3.5.6) .
7(v) < ClIfll 2y (171l + llosll,) a conchn
A\-inequ. o (35.7 "
< CClfllz@lol +lvsdla) = CTlIfllzofi@lizs
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IFQ C R% is convex, u € H'(Q), Au € L*(Q), grad u - n + u = 0'on 9Q), then

u € H*(Q) and 3C = C(Q) > 0: [l 2y < CllAu|l 2
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Based on [Lecture — Thm. 3.3.2.21], qualitatively and quantitatively predict the asymptotic behavior of
the error norm |11 — 17| 1y, in terms of N; := dim &7 (M;) for N; — .
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Theorem 3.3.2.21. Error estimate for piecewise linear interpolation [ 3 . 3 . g ? j

For any u € C?(Q)) and 2D piecewise linear interpolation 1, : C°(Q)) — SY(M), M a triangular
mesh, holds
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where haq denotes the mesh width (— Def 3.2.1.4) and paq the shape regularity measure (—
Def. 3.3.2.20) of M.
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Theorem 1.9.0.10. Multiplicative trace inequality
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Employ the duality techniques introduced in [Lecture — § 3.6.3.3] to derive a sharp asymptotic estimate
forthe ertor norm 11— 2, as N := dim §7(M;) = 0 - 15
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Define the dual solution gr € Vp to F as solution of the dual variational problem

Theorem 3.6.1.7. Duality estimate for linear functional output

8r € Vo: a(v,gp) = F(U) Yoe V.
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IfQ) C R% is convex, u € Hl(Q), Au € Lz(Q), grad u-n+u =0 ond(), then

~Ag=u—u; inQ} , n-gradg+g=0 ondQ},

Theorem 3.5.8. Elliptic lifting theorem for convex domains
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Theorem 3.3.2.21. Error estimate for piecewise linear interpolation [ 3 3 X jj j

For any u € C%(Q) and 2D piecewise linear interpolation |1 : C°(Q)) — SY(M), M a triangular
mesh, holds
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where h 4 denotes the mesh width (— Def. 3.2.1.4) and p the shape regularity measure (—
Def. 3.3.2.20) of M.
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In the setting of the previous sub-problem, what asymptotic behavior can be deduced from the multiplica-
tive trace inequality [Lecture — Thm. 1.9.0.10] for the error norm || — 1, 12(50y) On the boundary in terms

of N; := dim 8} (M;) = o0? — O? / l
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Theorem 1.9.0.10. Multiplicative trace inequality
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In the file tee_lapl_robin_assembly.cc (name due to historical reasons) implement an

LEHRFEM++-based function Oz 5
double bdFunctionalEval (

std: :shared_ptr<lf::uscalfe::FeSpacelLagrangeOl<double>>& fe_space,
Fligen::VectorXd& coeff_vec);

that computes B(v;) = [, v, dS(x), where v, € 8?(M) and its basis expansion coefficients are
passed through coeff_vec. The argument fe_space also passes information about the (planar trian-
gular) mesh M and the “d.o.f. handler” for the finite element space.
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C++11 code 3.5.15: Sub-problem (3-5.i): function bdFunctionalEval () =* GITHUB
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double bdFunctionalEval (
std :: shared_pir<|f :: uscalfe :: FeSpaceLagrangeO1<double>>& fe_space,
Eigen :: VectorXd& coeff_vec) {

2

3

4

5 double bd_functional_val = 0;

5 _ 7
7

8

9

/* SOLUTION_BEGIN */

// Reference to mesh

std :: shared_ptr<const If ::mesh::Mesh> mesh_p{fe_space—>Mesh() };

10 // Obtain local->global index mapping for current finite element space
1 const If ::assemble:: DofHandler& dofh{fe_space-—>LocGlobMap() };

13 // Obtain an array of boolean flags for the edges of the mesh: ’true’

14 // indicates that the edge lies on the boundary. This predicate will
guarantee

15 // that the computations are carried only on the edges of the mesh.

16 auto bd_flags{If ::mesh:: utils :: flagEntitiesOnBoundary (mesh_p, 1)};

18 // Creating predicate that will guarantee that the computations are carried

19 // only on the edges of the mesh using the boundary flags

20 auto edges_predicate = [&bd_flags](const If ::mesh:: Entity& edge) —> bool {

21 return bd_flags (edge) ;

22 1

23

24 // Computing the integral of function vec on the flagged edges

25 double edge_length;
25 for (const If ::mesh:: Entity& edge : mesh_p—>Entities (1)) {

27 if (bd_flags(edge)) {

28 // Obtain endpoints of the edge

29 auto endpoints = If ::geometry::Corners (*(edge.Geometry())):;

0 LF_ASSERT_MSG(endpoints.cols () == "Wrong no endpoints in " << edge);
a1 // Compute length of the edge

£ edge_length = (endpoints.col(1) — endpoints.col(0)).norm() ;
33 // Find the endpoints global indices

34 auto dof_idx = dofh.GlobalDoflndices(edge) ;

35 BOOST_ASSERT(dofh. NoLocalDofs (edge) == 2);

3 bd_functional_val +=

a7 (coeff_vec.coeff(dof_idx[0]) + coeff_vec.coeff(dof_idx[1])) =*
] edge_length / 2.0;
® }
40 }
41 /* SOLUTION _END */
4 return bd_functional_val;
43
}
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Prove that for the linear functional v — B(v) as defined in (3.5.14) holds 3 @

f/&( y{\g = B(u)= /f(x)dx and B(u,) =19, (3.5.17)
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where 1 € H'(()) is the exact solution of (3.5.1), uy, € S)(M) the finite element solution, and ¢ € RY,
N := dim S?(M), is the right-hand-side vector of the Galerkin linear system. The symbol 1 stands for

N .. : _
the vector € RN with entries all = 1. )gh (/UhB
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