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Problem 3-4: A Boundary Value Problem
Modelling Stationary Heat Conduction
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Study the documentation of the LEHRFEM++ function 1f: :uscalfe;
and explain the purpose of its template parameters and arguments.

:InitEssentialCondition

template <typename SCALAR, typename EDGESELECTOR, typename FUNCTION>
std: :vector<std: :pair<bool, SCALAR>>
InitEssentialConditionFromFunction (
const 1f::assemble: :DofHandler &dofh,
const ScalarReferenceFiniteElement<SC R> &fe_spec_edge,
EDGESELECTOR &&esscondflag, FUNCTION &&qg);
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@ 0{ ; | Detailed Description

C++ code 3.4.1: Sub-problem (3-4.d): Implementation of / Computing the element matrix for the (negative) Laplacian and linear finite elements.
solveTemperatureDistribution (), more copiously commented version = GITLAB

double solveTemperatureDistribution ( The main purpose of this class is to compute the element matrix for the Laplacian on affine triangles or bilinearly mapped quadrilaterals. These element matrices are provided by the Eval () method.

// Dirichlet data

1

2

3 std :: shared_ptr<const If ::mesh::Mesh> mesh_p) { Note

4 auto bc\ Eigen :: Vector2d x) —> double { the Eval () method will always return a reference to a 4x4 matrix also for triangles. In this case the last row and column must be ignored.
5 return x[1] <= }:

This class complies with the requirements for the type ENTITY _MATRIX PROVIDER given as a template parameter to define an incamation of the function AssembleMatrixLocally().

> Vo =S4 BUP dm% Grm

6 If ::uscalfe: MeshFunctlonGIobaI m
7 auto fe_space =
8 std :: make_shared<|f :: uscalfe :: FeSpacelLagrange

] const If ::mesh::Mesh& mesh{x(fe_sp

10 const If ::assemble:: DofHandler& doih{fe_space—>LocGlob

1 const size_type N_dofs(dofh.NoDofs(|)); /

12 // Matrix in triplet format holding Galerki ] initi - d Un}’) = — —

" If ::assemble :: COOMatrix<double> A( A M —

14 // Element matrix builder for the f&ﬂﬂ/ﬂ jlﬂ&(?)dﬁ( 0 )< > &
15 If ::uscalfe ::LinearFELaplaceElemeniiMatrix elmat_builder{}; \ / ) / °2

16 // Cell-oriented assembly A 1 =

7 If ::assemble :: AssembleMatrixLocally |0, dofh, dofh, elmat_builder, A); T - 4, X X < 0
18 // Right-hand-side vector ___> 2 7 .?  —
19 Eigen:: Matrix<double, Eigen::Dynamidq, 1> phi(N_dofs); phi.setZero(); 4> \/ — 0

20 // Impose Dirichlet boundary condlitions

21 std :: shared_ptr<const If ::uscalfe:: ScalarReferenceFiniteElement<double>>

2 rsf_edge_p =

fe_space —>ShapeFunctionLayout| If ::base :: RefEl:: kSegment() ) ;
23 auto bd_flags{|If ::mesh:: utils :: flagEntitiesOnBoundary(fe_space—>Mesh() ,
1}

auto ess_bdc_flags_values{ If :: uscalfe|: :'InitEssentialConditionFromFunction (

R

25 dofh, xrsf_edge_p,
26 [&bd_flags](const If ::mesh:: Entity& edge) — bool {
27 return (bd flags(edge)) }, mf_bc)};
28 If ::assemble ::4 ‘ | n_components <doul
29 [&ess_ bdc flags values](glb idx_t gdof_idx) {
30 return ess_bdc_flags_values[gdof_idx]; }, A, phi);
31 // Solve linear system of equations
3 Eigen:: SparseMatrix<double> A_crs = A.makeSparse() ;
ES) Eigen :: SparseLU<Eigen :: SparseMatrix<double>> solver;
A solver.compute(A_crs) ;
35 LF_VERIFY_MSG(solver.info () == Eigen::Success, "LU decomposition failed");
3 Eigen:: VectorXd sol_vec = solver.solve(phi);
37 LF_VERIFY_MSG(solver.info () == Eigen::Success, "Solving LSE failed");
a8 // Compute H'(Q)-semi-norms
39 If ::uscalfe:: MeshFunctionL2GradientDifference loc_comp(
40 fe_space, If ::uscalfe::MeshFunctionConstant(Eigen::Vector2d(0.0, 0.0)),
41 2);
a2 return If ::uscalfe :: NormOfDifference(dofh, loc_comp, sol_vec);
43
}
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For the three different domains shown introduced in Sub-problem (3-4.e), we compute the finite element
solutions 1, on sequences of regularly refined triangular meshes 7y, 71, ..., 71 and plot k — || H(0Q)

in Fig. 23 and k +— [ug| 1 () — |uL|p1(q) inFig- 24,k =1,..., L — 1.
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H, seminorm for different domains
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Absolute difference of H; seminorms for different domains
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