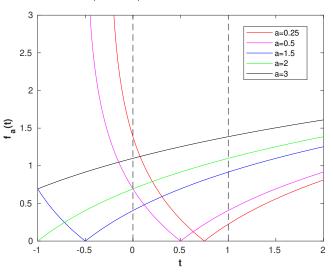
SOLUTION of (6-10.b):



 \lhd Graphs of $t \mapsto f_a(t)$ for the values of a occurring in the above table.

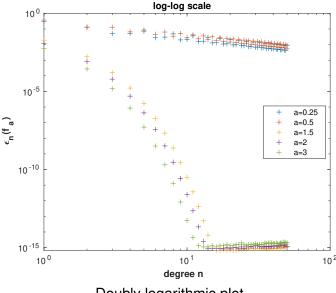
The interval [0,1] is marked with dashed vertical lines.

The function $t \mapsto \log(t+a)$ is defined on $]-a, \infty[$ and changes sign in t=1-a. Hence,

- if 0 < a < 1, then $f_a(t) = |\log(t+a)|$ has a "kink" in the interval]0,1[, a lack of smoothness, that will lead to slow (algebraic) convergence of $\epsilon_n(f_a) \to 0$ as $n \to 0$.
- if a>1, then f_a is *analytic* in [0,1]. The nearest $z\in\mathbb{C}$, where analyticity breaks down is z=1-a< As a consequence the domain of analyticity is the larger, the larger the value of a; we expect exponential convergence $\epsilon_n(f_a)\to 0$ as $n\to\infty$, which will be faster for larger values of a>1.

Alternatively, one can resort to the interpolation error estimate [Lecture \to (6.2.3.17)] which indicates that the error is proportional to the (n+1)-th derivative of f. It is easy to see that $\|f_a^{(n+1)}\|_{\infty,[0,1]}$ (-1) $^{n+1}a^{-n-1}$ for a>1. Hence, we expect lower error (faster convergence) for a with larger value.

The following plots display $n \mapsto \epsilon_n(f_a)$ for the values of a listed in the above table.



Doubly logarithmic plot

	exponential convergence	algebraic convergence	rank (exp. cvg. only)
$a = \frac{1}{4}$	_	✓	
$a = \frac{1}{2}$		✓	
$a = \frac{3}{2}$	✓	_	3
$a=\overline{2}$	✓	_	2
a=3	✓	_	1