Lecture 11: Effective electrical tissue properties imaging

Habib Ammari

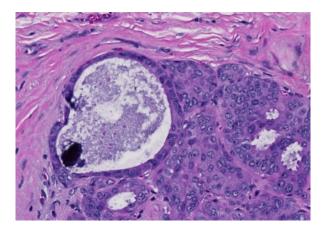
Department of Mathematics, ETH Zürich

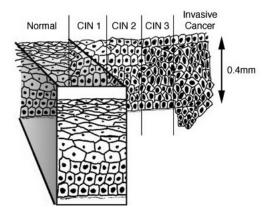
Habib Ammari

Mathematics of super-resolution biomedical imaging

- Diagnosis and staging of cancer disease.
- Help surgeons to make sure they removed everything unwanted around the margin of the cancer tumor.
- Perform biopsy in the operating room.

Electrical impedance system of electrodes:



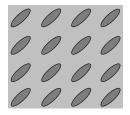


- Admittivities of biological tissues vary with the frequency $\omega \leq 10$ MHz of the applied sinusoidal current.
- Admittivities of biological tissues may be anisotropic at low frequencies, but they become isotropic as the frequency increases.
- Cell: homogeneous core covered by a thin membrane of contrasting electric conductivities and permittivities.
 - Intra and extra-cellular media: k₀ := σ₀ + iωε₀ (conducting effect; transport of charges);
 - Membrane: k_m := σ_m + iωε_m with σ_m/σ₀ ≪ 1 (capacitance effect; storage or charges or rotating molecular dipoles);
 - Thickness of the membrane \ll typical size of the cell.

- Cell membrane phenomena:
 - Low frequencies: induced polarization effect due to the membrane.
 - High frequencies: induced polarization effect disappears.
- Electrical tissue property:
 - Pointwise at microscopic scale;
 - Effective at macroscopic scale: linear relationship between the ensemble mean current density and the ensemble mean electrical field;
 - Apparent: electrical tissue property of locally homogeneous and isotropic medium = potential measured on the heterogeneous subject using the same applied current and arrangement of the electrodes.

- Spectral properties of the effective admittivity: super-resolution in electrical imaging of biological tissues.
- Classification of micro-structure organization using spectroscopic admittivity imaging.
- Distance on the effective admittivity spectra to statistically differentiate tissues with different microstructures.
- Measure of the admittivity anisotropy and its dependence on the frequency of applied current.
 - Anisotropic tissues: muscles and nerves.
 - Clinical application: neuromuscular diseases lead to a reduction in anisotropy for a range of frequencies; muscle fibers replaced by isotropic tissue.

• Tissue model:



- δ : cell period;
- Ω_{δ}^+ : extra-cellular medium;
- Ω_{δ}^{-} : intra-cellular medium;
- Γ_{δ} : cell membranes.
- Y: unit cell; Y^{\pm} : extra-cellular and intra-cellular (rescaled) media.

$$\begin{cases} -\nabla \cdot k_0 \nabla u_{\delta}^+ = 0 & \text{in } \Omega_{\delta}^+ \cup \Omega_{\delta}^-, \\ k_0 \frac{\partial u_{\delta}^+}{\partial \nu} = k_0 \frac{\partial u_{\delta}^-}{\partial \nu} & \text{on } \Gamma_{\delta}, \\ u_{\delta}^+ - u_{\delta}^- - \delta \xi \frac{\partial u_{\delta}^+}{\partial \nu} = 0 & \text{on } \Gamma_{\delta}, \\ \frac{\partial u_{\delta}^+}{\partial \nu} = g & \text{on } \partial \Omega. \end{cases}$$

•
$$u_{\delta} = u_{\delta}^{\pm}$$
 in Ω_{δ}^{\pm} ;

• $\xi = \text{thickness} \times k_m/k_0$: effective thickness;

• g: electric field applied at $\partial \Omega$ of frequency $\omega (\int_{\partial \Omega} g d\sigma = 0)$.

• = • • = •

• Homogenized problem:

$$\left\{ \begin{array}{ll} -\nabla\cdot K^*\,\nabla u_0(x)=0 & \mbox{ in }\Omega,\\ \\ \frac{\partial u_0}{\partial\nu}=g & \mbox{ on }\partial\Omega, \end{array} \right.$$

• Effective admittivity:

$$\mathcal{K}_{i,j}^* = k_0 \left(\delta_{ij} + \int_{Y} \nabla w_i \cdot e_j \right),$$

• Cell problems (*i* = 1, ..., *d*; *d*: space dimension):

$$(-\nabla \cdot k_0 \nabla (w_i^+(y) + y_i) = 0$$
 in Y^+ ,

$$-\nabla \cdot k_0 \nabla (w_i^-(y) + y_i) = 0 \qquad \text{in } Y^-,$$

$$k_0 \frac{\partial}{\partial \nu} (w_i^+(y) + y_i) = k_0 \frac{\partial}{\partial \nu} (w_i^-(y) + y_i) \quad \text{on } \Gamma,$$

$$w_i^+ - w_i^- - \frac{\xi}{\partial \nu} \frac{\partial}{\partial \nu} (w_i^+(y) + y_i) = 0 \qquad \text{on } \Gamma,$$
$$v \longmapsto w_i(v) \text{ } Y \text{-periodic.}$$

- u_{δ} two-scale converges to u_0 .
- ∇u_{δ} two-scale converges to $\nabla u_0 + \chi^+ \nabla_y u_1^+ + \chi^- \nabla_y u_1^-$.
- χ^{\pm} : characteristic function of Y^{\pm} .
- Corrector:

$$\forall (x,y) \in \Omega \times Y, \ u_1(x,y) = \sum_{i=1}^2 \frac{\partial u_0}{\partial x_i}(x) w_i(y).$$

• Spectroscopic imaging: $\omega \mapsto K^*(\omega)$;

•
$$\mathcal{K}_{i,j}^*(\omega) = k_0 \left(\delta_{ij} + \int_Y \nabla w_i(\omega) \cdot e_j \right);$$

Correctors:

$$-
abla\cdot k_0
abla(w_i^+(y)+y_i)=0$$
 in $Y^+,$

$$-\nabla \cdot k_0 \nabla (w_i^-(y) + y_i) = 0 \qquad \text{in } Y^-,$$

$$k_0 \frac{\partial}{\partial \nu} (w_i^+(y) + y_i) = k_0 \frac{\partial}{\partial \nu} (w_i^-(y) + y_i) \quad \text{on } \Gamma_i$$

$$w_i^+ - w_i^- - \xi(\omega) \frac{\partial}{\partial \nu} (w_i^+(y) + y_i) = 0$$
 on Γ ,
 $y \longmapsto w_i(y)$ Y-periodic.

The effective admittivity of a periodic dilute suspension:

$$K^* = k_0 \left(I + fM \left(I - \frac{f}{2}M \right)^{-1} \right) + o(f^2),$$

• $f = |Y^-| = \rho^2$: volume fraction;

• M: membrane polarization tensor

$$M = \left(m_{ij} = \beta k_0 \int_{\rho^{-1}\Gamma} \nu_j \psi_i^*(y) ds(y)\right)_{(i,j) \in [[1,2]]^2},$$

•
$$\psi_i^* = -(I + \beta k_0 L_{\rho^{-1}\Gamma})^{-1} [\nu_i].$$

• $L_{\Gamma}[\varphi](x) = \frac{1}{2\pi} \text{p.v.} \int_{\Gamma} \frac{\partial^2 \ln |x - y|}{\partial \nu(x) \partial \nu(y)} \varphi(y) ds(y), \quad x \in \Gamma.$

Maxwell-Wagner-Fricke Formula:

- Case of concentric circular-shaped cells.
- For $(i,j) \in [|1,2|]^2$:

$$m_{i,j} = -\delta_{ij}rac{eta k_0\pi r_0}{1+rac{eta k_0}{2r_0}}.$$

• $\Im M$ attains one maximum with respect to ω at $1/\tau$:

$$\Im m_{i,j} = \delta_{ij} \frac{\pi r_0 \delta \omega (\varepsilon_m \sigma_0 - \varepsilon_0 \sigma_m)}{(\sigma_m + \frac{\eta \sigma_0}{2r_0})^2 + \omega^2 (\varepsilon_m + \frac{\eta \varepsilon_0}{2r_0})^2}.$$

- η : membrane thickness.
- τ : relaxation time (in the β -dispersion region).

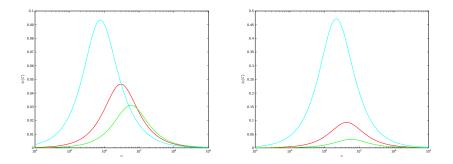
- Properties of the membrane polarization tensor:
 - *M*: symmetric;
 - *M*: invariant by translation;
 - $M(sC,\xi) = s^2 M(C,\frac{\xi}{s})$ for any scaling parameter s > 0.
 - $M(\mathcal{R}C,\xi) = \mathcal{R}M(C,\xi)\mathcal{R}^t$ for any rotation \mathcal{R} .
 - $\Im M$: positive and its eigenvalues have one maximum with respect to ω .
- Relaxation times for the arbitrary-shaped cells:

$$rac{1}{ au_i} := rg\max_{\omega} \lambda_i(\omega),$$

 $\lambda_1 \geq \lambda_2$: eigenvalues of $\Im M$.

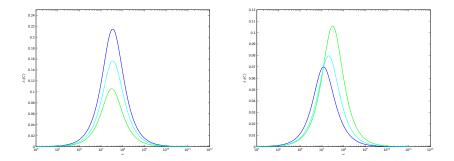
• $(\tau_i)_{i=1,2}$: invariant by translation, rotation and scaling.

Shape of the cell and relaxation times: circle, an ellipse and a very elongated ellipse



Habib Ammari

Frequency dependence of the eigenvalues of the membrane polarization tensors for the 3 different shapes of cell: circle, an ellipse and a very elongated ellipse with the same volume



• Measure of the anisotropy:

$$\omega \mapsto \frac{\lambda_1(\omega)}{\lambda_2(\omega)}$$

•
$$\lambda_1 \leq \lambda_2$$
: eigenvalues of $\Im M(\omega)$.

• Large
$$\omega$$
:

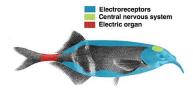
$$\frac{\lambda_1(\omega)}{\lambda_2(\omega)} = 1 + (l_1 - l_2) \frac{2\eta \sigma_m \rho}{(\sigma_m^2 + \omega^2 \varepsilon_m^2) |\Gamma|} + O(\eta^2),$$

 η : membrane thickness; $l_1 \leq l_2$: eigenvalues of $\int_{\rho^{-1}\Gamma} n \mathcal{L}_{\rho^{-1}\Gamma}[n] ds$.

• Anisotropic information not captured:

$$\omega \gg \frac{1}{\varepsilon_m} ((l_1 - l_2) \frac{2\eta \sigma_m \rho}{|\Gamma|} - \sigma_m^2)^{1/2}.$$

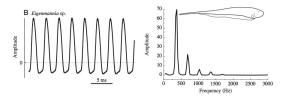
- Electrolocation for weakly electric fish:
 - Electric organ: generate a stable, high-frequency, weak electric field.
 - Electroreceptors: measure the transdermal potential modulations caused by a nearby target.
 - Nervous system: locate the target, perceive its shape, determine its physical nature.



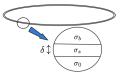
Mechanism for mimicking shape perception:

- Form an image from the perturbations of the field due to targets.
- Identify and classify the target, knowing by advance that it belongs to a learned dictionary of shapes.
 - Extract the features from the data.
 - Construct invariants with respect to rigid transformations and scaling.
 - Compare the invariants with precomputed ones for the dictionary.
- Biological targets: frequency dependent electromagnetic properties (capacitive effect generated by the cell membrane structure).
- Spectroscopic measurements of the target's polarization tensor.

• Wave-type electric signal: $f(x, t) = f(x) \sum_{n} a_n e^{in\omega_0 t}$; ω_0 : fundamental frequency.



• Skin: very thin ($\delta \sim 100 \mu$ m) and highly resistive ($\sigma_s/\sigma_0 \sim 10^{-2}$); $\sigma_b/\sigma_0 \sim 10^2$ (highly conductive).



- Target $D = z + \delta'B$; z: location; δ' : characteristic size of the target; $k(\omega) = (\sigma(\omega) + i\omega\varepsilon(\omega))/\sigma_0$; k, σ , and ε : the admittivity, the conductivity, and the permittivity of the target; $\omega_n = n\omega_0$: the probing frequency.
- u_n : the electric potential field generated by the fish:

$$\begin{cases} \Delta u_n = f, & x \in \Omega, \\ \nabla \cdot (1 + (k(\omega_n) - 1)\chi(D))\nabla u_n = 0, & x \in \mathbb{R}^2 \setminus \overline{\Omega}, \\ \frac{\partial u_n}{\partial \nu} \bigg|_{-} = 0, \quad [u_n] = \xi \frac{\partial u_n}{\partial \nu} \bigg|_{+} & x \in \partial\Omega, \\ & |u_n(x)| = O(|x|^{-1}), \quad |x| \to \infty. \end{cases}$$

- $\xi := \delta \sigma_0 / \sigma_s$ effective thickness.
- $\lambda(\omega_n) = (k(\omega_n) + 1)/(2(k(\omega_n) 1)).$

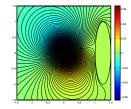
- Dipole approximation: $u_n(x) U(x) \simeq \mathbf{p} \cdot \nabla G(x-z)$.
 - G: Green's function associated to Robin boundary conditions.
 - Dipole moment $\mathbf{p} = \underbrace{\mathcal{M}(\lambda(\omega_n), D)} \nabla \mathcal{U}(z).$

Polarization tensor

• Neumann-Poincaré operator:

$$\mathcal{K}_{D}^{*}[\varphi](x) = \frac{1}{2\pi} \int_{\partial D} \frac{\langle x - y, \nu_{x} \rangle}{|x - y|^{2}} \varphi(y) \, ds(y) \,, \quad x \in \partial D.$$

•
$$M(\lambda(\omega_n), D) = \int_{\partial D} x(\lambda(\omega_n)I - \mathcal{K}_D^*)^{-1}[\nu](x) ds(x).$$



Space-frequency response matrix: (Vⁿ_{sr})_{rn}

$$V_{sr}^{n} = \left(\left. \frac{\partial u_{n}}{\partial \nu}(x_{r}) \right|_{+} - \left. \frac{\partial U}{\partial \nu}(x_{r}) \right|_{+} \right),$$

 x_s : position of the electric organ; (x_r) : receptors on the skin of the fish.

- Space-frequency location search algorithm.
- Movement: fish takes measurement at different positions around the target; use of only one frequency.

• Dipole approximation:

$$V_{sr}^n \simeq -\nabla U(z) \cdot \overbrace{\mathcal{M}(\lambda(\omega_n), D)}^{\propto l} \cdot \left(\nabla \frac{\partial \mathcal{G}}{\partial \nu_x}(x_r - z) \right);$$

• z^{S} in the search domain; $g(z^{S})$ given by

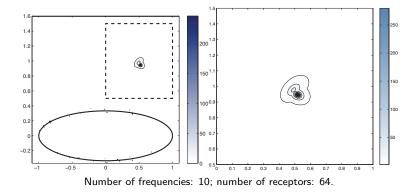
$$\left(\nabla U(z^{S}) \cdot \nabla \left(\frac{\partial G}{\partial \nu_{x}}\right)(x_{1}-z^{S}), \ldots, \nabla U(z') \cdot \nabla \left(\frac{\partial G}{\partial \nu_{x}}\right)(x_{L}-z^{S})\right)^{T};$$

• Subspace imaging functional:

$$\mathcal{I}(z^S) := rac{1}{|(I-P)g(z^S)|};$$

P: orthogonal projection onto the first singular vector of $(V_{sr}^n)_{rn}$;

• $\mathcal{I}(z^{S})$: large peak at $z^{S} = z$.



• σ, ε : determined by minimizing a quadratic misfit functional.

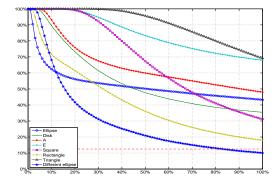
- Multi-frequency approach: $\omega \mapsto M(\lambda(\omega), D)$.
 - Invariance with respect to translation, rotation, and scaling.
 - τ_j(ω): eigenvalues of ℑm M(λ(ω), D); ω_∞: highest probing frequency. Plot

$$\omega \mapsto \frac{\tau_j(\omega)}{\tau_j(\omega_\infty)},$$

for j = 1, ..., d.



Habib Ammari



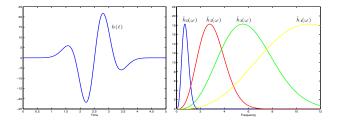
Probability of detection in terms of the noise level. Stability of classification based on differences between ratios of eigenvalues of $\Im m M(\lambda(\omega), D)$.

Habib Ammari

• Governing equation for pulsed-type imaging:

$$\begin{split} \nabla \cdot (\sigma(x) + \varepsilon(x)\partial_t) \nabla u(t,x) &= h(t)f(x) \text{ in } \mathbb{R}^+ \times \mathbb{R}^2, \ , \\ |u(t,x)| &= O(|x|^{1-d}) \text{ as } |x| \to +\infty, t \in \mathbb{R}_+ \ , \\ u(0,x) &= 0 \text{ in } \mathbb{R}^2 \ . \end{split}$$

• Pulse h: band pass filter $(\hat{h}(0) = 0)$; h_j : dyadic dilation of h: $h_j(t) = 2^{j/2}h(2^jt)$ and $\hat{h}_j(\omega) = 2^{-j/2}\hat{h}(2^{-j}\omega)$.



• Multi-scale shape descriptors.

