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Spectroscopic electrical tissue property imaging

• Diagnosis and staging of cancer disease.

• Help surgeons to make sure they removed everything unwanted around
the margin of the cancer tumor.

• Perform biopsy in the operating room.
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Spectroscopic electrical tissue property imaging

Electrical impedance system of electrodes:
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Spectroscopic electrical tissue property imaging

• Admittivities of biological tissues vary with the frequency ω ≤ 10 MHz of
the applied sinusoidal current.

• Admittivities of biological tissues may be anisotropic at low frequencies,
but they become isotropic as the frequency increases.

• Cell: homogeneous core covered by a thin membrane of contrasting

electric conductivities and permittivities.

• Intra and extra-cellular media: k0 := σ0 + iωε0 (conducting
effect; transport of charges);

• Membrane: km := σm + iωεm with σm/σ0 � 1 (capacitance
effect; storage or charges or rotating molecular dipoles);

• Thickness of the membrane � typical size of the cell.
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Spectroscopic electrical tissue property imaging

• Cell membrane phenomena:

• Low frequencies: induced polarization effect due to the
membrane.

• High frequencies: induced polarization effect disappears.

• Electrical tissue property:

• Pointwise at microscopic scale;
• Effective at macroscopic scale: linear relationship between the

ensemble mean current density and the ensemble mean
electrical field;

• Apparent: electrical tissue property of locally homogeneous
and isotropic medium = potential measured on the
heterogeneous subject using the same applied current and
arrangement of the electrodes.
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Spectroscopic electrical tissue property imaging

• Spectral properties of the effective admittivity: super-resolution in
electrical imaging of biological tissues.

• Classification of micro-structure organization using spectroscopic
admittivity imaging.

• Distance on the effective admittivity spectra to statistically differentiate
tissues with different microstructures.

• Measure of the admittivity anisotropy and its dependence on the
frequency of applied current.

• Anisotropic tissues: muscles and nerves.
• Clinical application: neuromuscular diseases lead to a

reduction in anisotropy for a range of frequencies; muscle
fibers replaced by isotropic tissue.
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Spectroscopic electrical tissue property imaging

• Tissue model:

• δ: cell period;

• Ω+
δ : extra-cellular medium;

• Ω−δ : intra-cellular medium;

• Γδ: cell membranes.

• Y : unit cell; Y±: extra-cellular and intra-cellular (rescaled) media.
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Spectroscopic electrical tissue property imaging



−∇ · k0∇u+
δ = 0 in Ω+

δ ∪ Ω−δ ,

k0
∂u+

δ

∂ν
= k0

∂u−δ
∂ν

on Γδ,

u+
δ − u−δ − δ ξ

∂u+
δ

∂ν
= 0 on Γδ,

∂u+
δ

∂ν
= g on ∂Ω.

• uδ = u±δ in Ω±δ ;

• ξ = thickness× km/k0 : effective thickness;

• g : electric field applied at ∂Ω of frequency ω (
∫
∂Ω

gdσ = 0).
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Spectroscopic electrical tissue property imaging

• Homogenized problem:
−∇ · K∗∇u0(x) = 0 inΩ,

∂u0

∂ν
= g on ∂Ω,

• Effective admittivity:

K∗i,j = k0

(
δij +

∫
Y

∇wi · ej
)
,
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Spectroscopic electrical tissue property imaging
• Cell problems (i = 1, . . . , d ; d : space dimension):

−∇ · k0∇(w+
i (y) + yi ) = 0 in Y +,

−∇ · k0∇(w−i (y) + yi ) = 0 in Y−,

k0
∂

∂ν
(w+

i (y) + yi ) = k0
∂

∂ν
(w−i (y) + yi ) on Γ,

w+
i − w−i − ξ

∂

∂ν
(w+

i (y) + yi ) = 0 on Γ,

y 7−→ wi (y) Y -periodic.

• uδ two-scale converges to u0.

• ∇uδ two-scale converges to ∇u0 + χ+∇yu
+
1 + χ−∇yu

−
1 .

• χ±: characteristic function of Y±.

• Corrector:

∀(x , y) ∈ Ω× Y , u1(x , y) =
2∑

i=1

∂u0

∂xi
(x)wi (y).
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Spectroscopic electrical tissue property imaging

• Spectroscopic imaging: ω 7→ K∗(ω);

• K∗i,j(ω) = k0

(
δij +

∫
Y

∇wi (ω) · ej
)

;

• Correctors:

−∇ · k0∇(w+
i (y) + yi ) = 0 in Y +,

−∇ · k0∇(w−i (y) + yi ) = 0 in Y−,

k0
∂

∂ν
(w+

i (y) + yi ) = k0
∂

∂ν
(w−i (y) + yi ) on Γ,

w+
i − w−i − ξ(ω)

∂

∂ν
(w+

i (y) + yi ) = 0 on Γ,

y 7−→ wi (y) Y -periodic.
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Spectroscopic electrical tissue property imaging

The effective admittivity of a periodic dilute suspension:

K∗ = k0

(
I + f M

(
I − f

2
M

)−1
)

+ o(f 2),

• f = |Y−| = ρ2: volume fraction;

• M: membrane polarization tensor

M =

(
mij = βk0

∫
ρ−1Γ

νjψ
∗
i (y)ds(y)

)
(i,j)∈[|1,2|]2

,

• ψ∗i = −
(
I + βk0Lρ−1Γ

)−1
[νi ].

• LΓ[ϕ](x) =
1

2π
p.v.

∫
Γ

∂2 ln |x − y |
∂ν(x)∂ν(y)

ϕ(y)ds(y), x ∈ Γ.
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Spectroscopic electrical tissue property imaging

Maxwell-Wagner-Fricke Formula:

• Case of concentric circular-shaped cells.

• For (i , j) ∈ [|1, 2|]2:

mi,j = −δij
βk0πr0

1 +
βk0

2r0

.

• =M attains one maximum with respect to ω at 1/τ :

=mi,j = δij
πr0δω(εmσ0 − ε0σm)

(σm + ησ0
2r0

)2 + ω2(εm + ηε0
2r0

)2
.

• η: membrane thickness.

• τ : relaxation time (in the β-dispersion region).
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Spectroscopic electrical tissue property imaging

• Properties of the membrane polarization tensor:

• M: symmetric;
• M: invariant by translation;
• M(sC , ξ) = s2M(C , ξs ) for any scaling parameter s > 0.
• M(RC , ξ) = RM(C , ξ)Rt for any rotation R.
• =M: positive and its eigenvalues have one maximum with

respect to ω.

• Relaxation times for the arbitrary-shaped cells:

1

τi
:= argmax

ω
λi (ω),

λ1 ≥ λ2: eigenvalues of =M.

• (τi )i=1,2: invariant by translation, rotation and scaling.
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Spectroscopic electrical tissue property imaging

Shape of the cell and relaxation times: circle, an ellipse and a very elongated
ellipse
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Spectroscopic electrical tissue property imaging

Frequency dependence of the eigenvalues of the membrane polarization tensors
for the 3 different shapes of cell: circle, an ellipse and a very elongated ellipse
with the same volume
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Spectroscopic electrical tissue property imaging

• Measure of the anisotropy:

ω 7→ λ1(ω)

λ2(ω)

• λ1 ≤ λ2: eigenvalues of =M(ω).

• Large ω:
λ1(ω)

λ2(ω)
= 1 + (l1 − l2)

2ησmρ

(σ2
m + ω2ε2

m)|Γ| + O(η2),

η: membrane thickness; l1 ≤ l2: eigenvalues of
∫
ρ−1Γ

nLρ−1Γ[n]ds.

• Anisotropic information not captured:

ω � 1

εm
((l1 − l2)

2ησmρ

|Γ| − σ
2
m)1/2.
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Spectroscopic electrical tissue property imaging

• Electrolocation for weakly electric fish:

• Electric organ: generate a stable, high-frequency, weak electric
field.

• Electroreceptors: measure the transdermal potential
modulations caused by a nearby target.

• Nervous system: locate the target, perceive its shape,
determine its physical nature.
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Spectroscopic electrical tissue property imaging

Mechanism for mimicking shape perception:

• Form an image from the perturbations of the field due to targets.

• Identify and classify the target, knowing by advance that it belongs to a

learned dictionary of shapes.

• Extract the features from the data.
• Construct invariants with respect to rigid transformations and

scaling.
• Compare the invariants with precomputed ones for the

dictionary.

• Biological targets: frequency dependent electromagnetic properties
(capacitive effect generated by the cell membrane structure).

• Spectroscopic measurements of the target’s polarization tensor.
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Spectroscopic electrical tissue property imaging

• Wave-type electric signal: f (x , t) = f (x)
∑

n ane
inω0t ; ω0: fundamental

frequency.

• Skin: very thin (δ ∼ 100µm) and highly resistive (σs/σ0 ∼ 10−2);
σb/σ0 ∼ 102 (highly conductive).

Mathematics of super-resolution biomedical imaging Habib Ammari



Spectroscopic electrical tissue property imaging

• Target D = z + δ′B; z : location; δ′: characteristic size of the target;
k(ω) = (σ(ω) + iωε(ω))/σ0; k, σ, and ε: the admittivity, the
conductivity, and the permittivity of the target; ωn = nω0: the probing
frequency.

• un : the electric potential field generated by the fish:

∆un = f , x ∈ Ω,

∇ · (1 + (k(ωn)− 1)χ(D))∇un = 0, x ∈ R2 \ Ω,

∂un
∂ν

∣∣∣∣
−

= 0, [un] = ξ
∂un
∂ν

∣∣∣∣
+

x ∈ ∂Ω,

|un(x)| = O(|x |−1), |x | → ∞.

• ξ := δσ0/σs effective thickness.

• λ(ωn) = (k(ωn) + 1)/(2(k(ωn)− 1)).
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Spectroscopic electrical tissue property imaging

• Dipole approximation: un(x)− U(x) ' p · ∇G(x − z).

• G : Green’s function associated to Robin boundary conditions.
• Dipole moment p = − M(λ(ωn),D)︸ ︷︷ ︸

Polarization tensor

∇U(z).

• Neumann-Poincaré operator:

K∗D [ϕ](x) =
1

2π

∫
∂D

〈x − y , νx〉
|x − y |2

ϕ(y) ds(y) , x ∈ ∂D.

• M(λ(ωn),D) =

∫
∂D

x(λ(ωn)I −K∗D)−1[ν](x) ds(x).
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Spectroscopic electrical tissue property imaging

• Space-frequency response matrix: (V n
sr )rn

V n
sr =

(
∂un
∂ν

(xr )

∣∣∣∣
+

− ∂U

∂ν
(xr )

∣∣∣∣
+

)
,

xs : position of the electric organ; (xr ): receptors on the skin of the fish.

• Space-frequency location search algorithm.

• Movement: fish takes measurement at different positions around the
target; use of only one frequency.
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Spectroscopic electrical tissue property imaging

• Dipole approximation:

V n
sr ' −∇U(z) ·

∝I︷ ︸︸ ︷
M(λ(ωn),D) ·

(
∇ ∂G
∂νx

(xr − z)

)
;

• zS in the search domain; g(zS) given by(
∇U(zS) · ∇

(
∂G

∂νx

)
(x1 − zS), . . . ,∇U(z ′) · ∇

(
∂G

∂νx

)
(xL − zS)

)T

;

• Subspace imaging functional:

I(zS) :=
1

|(I − P)g(zS)| ;

P: orthogonal projection onto the first singular vector of (V n
sr )rn;

• I(zS): large peak at zS = z .
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Spectroscopic electrical tissue property imaging

 

 

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

50

100

150

200

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

50

100

150

200

250

Number of frequencies: 10; number of receptors: 64.

• σ, ε: determined by minimizing a quadratic misfit functional.
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Spectroscopic electrical tissue property imaging

• Multi-frequency approach: ω 7→ M(λ(ω),D).

• Invariance with respect to translation, rotation, and scaling.
• τj(ω): eigenvalues of =mM(λ(ω),D); ω∞: highest probing

frequency. Plot

ω 7→ τj(ω)

τj(ω∞)
,

for j = 1, . . . , d .

Mathematics of super-resolution biomedical imaging Habib Ammari



Spectroscopic electrical tissue property imaging
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Spectroscopic electrical tissue property imaging
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Probability of detection in terms of the noise level. Stability of classification
based on differences between ratios of eigenvalues of =mM(λ(ω),D).
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Spectroscopic electrical tissue property imaging
• Governing equation for pulsed-type imaging:

∇ · (σ(x) + ε(x)∂t)∇u(t, x) = h(t)f (x) in R+ × R2, ,

|u(t, x)| = O(|x |1−d) as |x | → +∞, t ∈ R+ ,

u(0, x) = 0 in R2 .

• Pulse h: band pass filter (ĥ(0) = 0); hj : dyadic dilation of h:

hj(t) = 2j/2h(2j t) and ĥj(ω) = 2−j/2ĥ(2−jω).
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Spectroscopic electrical tissue property imaging

• Multi-scale shape descriptors.
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Results of identification with two scales 100% noise in a limited view
configuration (aperture = π/16).
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