Lecture 7: Ultrasonically-induced Lorentz force imaging

Habib Ammari

Department of Mathematics, ETH Zürich

Habib Ammari

Mathematics of super-resolution biomedical imaging

- Mathematical and numerical framework for ultrasonically-induced Lorentz force electrical impedance tomography:
 - Ultrasonic vibration of a tissue in the presence of a static magnetic field → electrical current by the Lorentz force.
 - Current: depends nonlinearly on the conductivity distribution.
 - Imaging problem: reconstruct the conductivity distribution from measurements of the induced current.
 - Solve this nonlinear inverse problem:
 - Virtual potential: relate explicitly the current measurements to the conductivity distribution and the velocity of the ultrasonic pulse.
 - Wiener filtering of the measured data: reduce the problem to imaging the conductivity from an internal electric current density.
 - Optimal control approach.
 - Viscosity-type regularization method.

Example of the imaging device. A transducer is emitting ultrasound in a sample placed in a constant magnetic field. The induced electrical current is collected by two electrodes.

- Interaction between $v(x, t)\xi$ and Be_3 : induces Lorentz' force on the ions in $\Omega \Rightarrow$ separation of charges \equiv source of current and potential: $j_5(x, t) = \frac{B}{e^+}\sigma(x)v(x, t)\tau(\xi)$; $\tau(\xi) = \xi \times e_3$; e^+ : elementary charge.
- Voltage potential *u*:

$$\begin{cases} -\nabla \cdot (\sigma \nabla u) = \nabla \cdot j_S \text{ in } \Omega, \\ u = 0 \text{ on } \Gamma_1 \cup \Gamma_2, \ \frac{\partial u}{\partial \nu} = 0 \text{ on } \Gamma_0. \end{cases}$$

• Measured intensity: $I(y,\xi) = \int_{\tau} \sigma \frac{\partial u}{\partial \nu}$.

• Virtual potential:

$$U := F[\sigma] = \begin{cases} -\nabla \cdot (\sigma \nabla U) = 0 & \text{in } \Omega, \\ U = 0 & \text{on } \Gamma_1, \\ U = 1 & \text{on } \Gamma_2, \\ \partial_{\nu} U = 0 & \text{on } \Gamma_0. \end{cases}$$

- Assume that the support of v does not intersect the electrodes Γ₁ and Γ₂.
- Integration by parts \Rightarrow

$$-\int_{\Omega} \sigma \nabla u \cdot \nabla U + \int_{\Gamma_2} \sigma \frac{\partial u}{\partial \nu} = \int_{\Omega} j_S \cdot \nabla U \,.$$
$$I = \int_{\Omega} j_S \cdot \nabla U \,.$$

⇒

• Link between the measured intensity I and σ :

$$I=\frac{B}{e^+}\int_{\Omega}v(x,t)\sigma(x)\nabla U(x)dx\cdot\tau\,.$$

- v depends on y, ξ , and t, so does I.
- Define the measurement function:

$$M(y,\xi,z) = \int_{\Omega} v(x,z/c)\sigma(x)\nabla U(x)dx \cdot \tau(\xi)$$

for any $y \in \mathbb{R}^3$, $\xi \in S$ and z > 0.

 Assume the knowledge of this function in a certain subset of ℝ³ × S × ℝ⁺ denoted by Y × 𝔅 × (0, z_{max}).

- Construction of the virtual current: Obtain σ∇U from M ← separate v from M.
- Ultrasound pulse:

$$\begin{aligned} \mathbf{v}(x,t) &= \mathbf{w}(z-ct) \ \mathbf{A}(z,|r|);\\ z &= (x-y) \cdot \xi \text{ and } r = x-y-z\xi \ \in \Upsilon_{\xi} := \{\zeta \in \mathbb{R}^3 \ : \ \zeta \cdot \xi = 0\}. \end{aligned}$$

$$\bullet \text{ For any } z \in (0, z_{max}), \end{aligned}$$

$$\begin{split} M(y,\xi,z) &= \int_{\mathbb{R}} \int_{\Upsilon_{\xi}} w(z-z') (\sigma \nabla U) (y+z'\xi+r) A(z',|r|) dr dz' \cdot \tau(\xi) \\ &= \int_{\mathbb{R}} w(z-z') \int_{\Upsilon_{\xi}} (\sigma \nabla U) (y+z'\xi+r) A(z',|r|) dr dz' \cdot \tau(\xi) \\ &= (W \star \Phi_{y,\xi}) (z) \cdot \tau(\xi) \,, \end{split}$$

W(z) = w(-z); *: convolution product;

$$\Phi_{y,\xi}(z) = \int_{\Upsilon_{\xi}} \sigma(y+z\xi+r)A(z,|r|)\nabla U(y+z\xi+r)dr$$

- Deconvolution:
 - Recover Φ_{y,ξ} from the measurements M(y, ξ, ·) in the presence of noise.
 - Wiener-type filter.
 - Assume that the signal M(y, ξ, ·) is perturbed by a random white noise:

$$\widetilde{M}(y,\xi,z) = M(y,\xi,z) + \mu(z),$$

 μ : white Gaussian noise with variance ν^2 s.t.

$$\mathbb{E}[\mu(z)\mu(z')] = \nu^2 \delta_0(z-z')$$

and

$$\mathbb{E}[\mathcal{F}(\mu)(k)\overline{\mathcal{F}(\mu)(k')}] =
u^2 \delta_0(k-k')$$

where

$$\mathcal{F}[\mu](k) = rac{1}{\sqrt{2\pi}}\int \mu(z)e^{-ikz}dz$$
 .

$$\widetilde{M}_{\!\scriptscriptstyle \mathcal{Y},\xi}(z) = \left(W \star \Psi_{\scriptscriptstyle \mathcal{Y},\xi}
ight)(z) + \mu(z) \, ,$$

 $\Psi_{y,\xi}(z) = \Phi_{y,\xi}(z) \cdot \tau(\xi).$

- S(Ψ_{y,ξ}) = ∫_ℝ |F(Ψ_{y,ξ})(k)|²dk: spectral density of Ψ_{y,ξ}; F: Fourier transform.
- Wiener deconvolution filter in the frequency domain:

$$\widehat{L}(k) = rac{\overline{\mathcal{F}(W)}(k)}{|\mathcal{F}(W)|^2(k) + rac{
u^2}{S(\Psi_{y,\xi})}}$$

- Quotient $S(\Psi_{y,\xi})/\nu^2$: signal-to-noise ratio.
- A priori estimate of the signal-to-noise ratio.
- Recover $\Psi_{y,\xi}$ up to a small error by

$$\widetilde{\Psi}_{y,\xi} = \mathcal{F}^{-1}\left(\mathcal{F}(\widetilde{M})\widehat{L}\right) \,.$$

- Wiener deconvolution filter: recover D(x) = (σ∇U)(x) from measured intensities I(y, ξ).
- Recover σ from $D = \sigma \nabla U$.
- Optimal control algorithm.

• For
$$a < b$$
, $L^{\infty}_{a,b}(\Omega) := \{f \in L^{\infty}(\Omega) : a < f < b\}$; Define $\mathcal{F} : L^{\infty}_{\underline{\sigma},\overline{\sigma}}(\Omega) \to H^{1}(\Omega)$ by

$$\mathcal{F}[\sigma] = \mathcal{U} : \begin{cases} \nabla \cdot (\sigma \nabla \mathcal{U}) = 0 & \text{ in } \Omega \,, \\ \mathcal{U} = 0 & \text{ on } \Gamma_1 \,, \\ \mathcal{U} = 1 & \text{ on } \Gamma_2 \,, \\ \frac{\partial \mathcal{U}}{\partial \nu} = 0 & \text{ on } \Gamma_0 \,. \end{cases}$$

dF: Fréchet derivative of *F*. For any *σ* ∈ *L*[∞]_{<u>σ</u>,<u>σ</u>}(Ω) and *h* ∈ *L*[∞](Ω) s.t. *σ* + *h* ∈ *L*[∞]_{<u>σ</u>,<u>σ</u>}(Ω),

$$d\mathcal{F}[\sigma](h) = \mathbf{v}: \begin{cases} \nabla \cdot (\sigma \nabla \mathbf{v}) = -\nabla \cdot (h \nabla \mathcal{F}[\sigma]) & \text{in } \Omega, \\ \mathbf{v} = 0 & \text{on } \Gamma_1 \cup \Gamma_2, \\ \frac{\partial \mathbf{v}}{\partial \nu} = 0 & \text{on } \Gamma_0. \end{cases}$$

御 と く ヨ と く ヨ と …

• Proof:
$$w = \mathcal{F}[\sigma + h] - \mathcal{F}[\sigma] - v$$
 satisfies
 $\nabla \cdot (\sigma \nabla w) = -\nabla \cdot (h \nabla (\mathcal{F}[\sigma + h] - \mathcal{F}[\sigma]))$

with the same boundary conditions as v.

• Elliptic global control:

$$\begin{split} \|\nabla w\|_{L^{2}(\Omega)} &\leq \frac{1}{\sigma} \|h\|_{L^{\infty}(\Omega)} \|\nabla (\mathcal{F}[\sigma+h] - \mathcal{F}[\sigma])\|_{L^{2}(\Omega)} \ . \end{split}$$

$$\bullet \ \nabla \cdot (\sigma \nabla (\mathcal{F}[\sigma+h] - \mathcal{F}[\sigma])) = -\nabla \cdot (h \nabla \mathcal{F}[\sigma+h]), \Rightarrow$$

$$\left\|
abla (\mathcal{F}[\sigma+h]-\mathcal{F}[\sigma])
ight\|_{L^2(\Omega)} \leq rac{1}{\sqrt{\sigma}} \left\| h
ight\|_{L^\infty(\Omega)} \left\|
abla \mathcal{F}[\sigma+h]
ight\|_{L^2(\Omega)} \,.$$

• \Rightarrow There is a positive constant *C* depending only on Ω s.t.

$$\|\nabla \mathcal{F}[\sigma+h]\|_{L^2(\Omega)} \leq C\sqrt{\frac{\overline{\sigma}}{\underline{\sigma}}}.$$

• =

$$\|\nabla w\|_{L^{2}(\Omega)} \leq C \frac{\sqrt{\overline{\sigma}}}{\underline{\sigma}^{2}} \|h\|_{L^{\infty}(\Omega)}^{2}$$

- Minimization of the functional: $J[\sigma] = \frac{1}{2} \int_{\Omega} |\sigma \nabla \mathcal{F}[\sigma] D|^2$.
- Gradient of J: For any $\sigma \in L^{\infty}_{\sigma,\overline{\sigma}}(\Omega)$ and $h \in L^{\infty}(\Omega)$ s.t. $\sigma + h \in L^{\infty}_{\sigma,\overline{\sigma}}(\Omega)$,

$$dJ[\sigma](h) = -\int_{\Omega} h\Big((\sigma \nabla \mathcal{F}[\sigma] - D - \nabla p) \cdot \nabla \mathcal{F}[\sigma]\Big);$$

p: solution to the adjoint problem:

$$\begin{cases} \nabla \cdot (\sigma \nabla p) = \nabla \cdot (\sigma^2 \nabla \mathcal{F}[\sigma] - \sigma D) & \text{in } \Omega, \\ p = 0 & \text{on } \Gamma_1 \cup \Gamma_2, \\ \frac{\partial p}{\partial \nu} = 0 & \text{on } \Gamma_0. \end{cases}$$

• Proof \mathcal{F} : Fréchet differentiable \Rightarrow *J*: Fréchet differentiable. For $\sigma \in L^{\infty}_{\sigma,\overline{\sigma}}(\Omega)$ and $h \in L^{\infty}(\Omega)$ s.t. $\sigma + h \in L^{\infty}_{\sigma,\overline{\sigma}}(\Omega)$,

$$dJ[\sigma](h) = \int_{\Omega} (\sigma \nabla \mathcal{F}[\sigma] - D) \cdot (h \nabla \mathcal{F}[\sigma] + \sigma \nabla d\mathcal{F}[\sigma](h)).$$

•
$$\Rightarrow$$

$$\int_{\Omega} \sigma \nabla p \cdot \nabla d\mathcal{F}[\sigma](h) = \int_{\Omega} (\sigma^{2} \nabla \mathcal{F}[\sigma] - \sigma D) \cdot \nabla d\mathcal{F}[\sigma](h) \cdot \int_{\Omega} \sigma \nabla p \cdot \nabla d\mathcal{F}[\sigma](h) = -\int_{\Omega} h \nabla \mathcal{F}[\sigma] \cdot \nabla p ,$$
• \Rightarrow

$$dJ[\sigma](h) = \int_{\Omega} h(\sigma \nabla \mathcal{F}[\sigma] - D - \nabla p) \cdot \nabla \mathcal{F}[\sigma] .$$

-∢ ⊒ ▶

• Optimal control algorithm:

•
$$\min_{\sigma} \int_{\Omega} |\sigma \nabla F[\sigma] - D|^2 + \text{regularization term (a prior)}$$
:

 σ: smooth variations out of the discontinuity set ⇒ regularized functional:

$$J_{\varepsilon}[\sigma] = \frac{1}{2} \int_{\Omega} \left| \sigma \nabla \mathcal{F}[\sigma] - D \right|^{2} + \varepsilon \left| \sigma \right|_{\mathcal{TV}(\Omega)},$$

 $\varepsilon >$ 0: regularization parameter.

• Nonconvexity (numerically); high sensitivity to noise.

Direct method

• Assume $U(x) = x_2 \Gamma_0 \Rightarrow U$: solution of the transport equation:

$$\begin{cases} D^{\perp} \cdot \nabla U = 0 & \text{in } \Omega, \\ U = x_2 & \text{on } \partial \Omega. \end{cases}$$

• If transport equation: well posed and can be solved \Rightarrow we can reconstruct the virtual potential $U \Rightarrow$

$$\frac{1}{\sigma} = \frac{D \cdot \nabla U}{|D|^2} \,.$$

- First-order equation: really tricky.
- Existence and uniqueness challenging if *F*: discontinuous.
- Characteristic method: unstable.

Direct method

• Viscosity-type regularization method:

$$\begin{cases} \nabla \cdot (\varepsilon I + (D^{\perp}(D^{\perp})^{T}) \nabla U_{\varepsilon} = 0 & \text{in } \Omega, \\ U_{\varepsilon} = x_{2} & \text{on } \partial \Omega. \end{cases}$$

Reconstructed image:

$$\frac{1}{\sigma_{\varepsilon}} := \frac{D \cdot \nabla U_{\varepsilon}}{|D|^2} \to \frac{1}{\sigma_*} \text{in } L^2$$

as the viscosity parameter $\varepsilon \rightarrow 0$; σ_* : true conductivity.

- $(U_{\eta} U)_{\varepsilon > 0}$ converges strongly to zero in $H_0^1(\Omega)$.
- Proof:
 - $F := D^{\perp}$.
 - $(U_{\varepsilon} U)_{\varepsilon > 0} \rightarrow 0$ weakly.
 - For any arepsilon>0, $ilde{U}_arepsilon:=U_arepsilon-U\in H^1_0(\Omega)$ and satisfies

$$abla \cdot \left[\left(\varepsilon I + FF^T \right) \nabla \tilde{U}_{\varepsilon} \right] = -\varepsilon \Delta U \quad \text{in } \Omega.$$

• Integration by parts \Rightarrow

$$\begin{split} \varepsilon \int_{\Omega} |\nabla \tilde{U}_{\varepsilon}|^{2} + \int_{\Omega} |F \cdot \nabla \tilde{U}_{\varepsilon}|^{2} &= -\varepsilon \int_{\Omega} \nabla U \cdot \nabla \tilde{U}_{\varepsilon}. \\ \bullet \Rightarrow \\ \left\| \tilde{U}_{\varepsilon} \right\|_{H_{0}^{1}(\Omega)}^{2} &\leq \int_{\Omega} |\nabla U \cdot \nabla \tilde{U}_{\varepsilon}| \leq \| U \|_{H^{1}(\Omega)} \left\| \tilde{U}_{\varepsilon} \right\|_{H_{0}^{1}(\Omega)} \end{split}$$

.

•
$$\Rightarrow \left\| \tilde{U}_{\varepsilon} \right\|_{H^{1}_{0}(\Omega)} \leq \left\| U \right\|_{H^{1}(\Omega)}$$

(Ũ_ε)_{ε>0}: bounded in H¹₀(Ω); by Banach-Alaoglu's theorem ⇒ extract a subsequence which converges weakly to U^{*} in H¹₀(Ω).

$$\int_{\Omega} \left(F \cdot \nabla \tilde{U}_{\varepsilon} \right) \left(F \cdot \nabla U^* \right) = -\varepsilon \int_{\Omega} \nabla U \cdot \nabla U^* - \varepsilon \int_{\Omega} \nabla \tilde{U}_{\varepsilon} \cdot \nabla U^* \,.$$

• $\varepsilon \to 0$, $\|F \cdot \nabla U^*\|_{L^2(\Omega)} = 0$. $\Rightarrow U^*$: solution the transport equation:

$$\begin{cases} F \cdot \nabla U^* = 0 & \text{ in } \Omega \,, \\ U^* = 0 & \text{ on } \partial \Omega \,. \end{cases}$$

- Uniqueness of a solution $\Rightarrow U^* = 0$ in Ω .
- U^* : independent of the subsequence \Rightarrow convergence holds for \tilde{U}_{ε} .

• Strong convergence:

•
$$\begin{split} & \int_{\Omega} |\nabla \tilde{U}_{\varepsilon}|^{2} \leq -\int_{\Omega} \nabla U \cdot \nabla \tilde{U}_{\varepsilon} \, . \\ \bullet \quad \tilde{U}_{\varepsilon} \rightharpoonup 0 \text{ in } H^{1}_{0}(\Omega) \Rightarrow \left\| \tilde{U}_{\varepsilon} \right\|_{H^{1}_{0}(\Omega)} \to 0. \\ & \left\| \frac{1}{\sigma_{\varepsilon}} = \frac{D \cdot \nabla U_{\varepsilon}}{|D|^{2}} \\ \end{split}$$
strongly converges to $\frac{1}{\sigma_{*}}$ in $L^{2}(\Omega)$.

Mathematics of super-resolution biomedical imaging

・日本 ・日本 ・日本

Mathematics of super-resolution biomedical imaging

Habib Ammari

