Lecture 9: Acousto-electric imaging

Habib Ammari

Department of Mathematics, ETH Zürich

Habib Ammari

Mathematics of super-resolution biomedical imaging

- Acousto-electric effect:
 - Acoustic pressure: p(x, t) = p₀b(x)a(t); p₀: amplitude; b: beam pattern; a: ultrasound waveform.
 - Acousto-electric effect:

 $\Delta \sigma = \eta \sigma p; \quad \eta : \text{ interaction constant.}$

- Acousto-electric imaging:
 - Change of conductivity induces a change of the boundary voltage measurements.
 - Scan the sample, record the boundary variations, and determine the conductivity distribution.

- Acousto-electric imaging: mathematical and numerical framework.
- *u* the voltage potential induced by a current *g* in the absence of acoustic perturbations:

$$\left\langle \begin{array}{c}
abla_x \cdot (\sigma(x)
abla_x u) = 0 \ \mathrm{in} \ \Omega \ , \\
abla_x \cdot (\sigma(x) rac{\partial u}{\partial
u} = g \ \mathrm{on} \ \partial \Omega \ . \end{array}
ight
angle$$

 Suppose σ bounded from below and above and known in a neighborhood of the boundary ∂Ω: σ = σ_{*}; Set Ω' ∈ Ω where σ: unknown.

• Use of focalized ultrasonic waves with D as a focal spot \rightarrow

$$\sigma_{\delta}(x) = \sigma(x) \bigg[1 + \chi(D)(x) (\nu(x) - 1) \bigg],$$

with $\nu(x) = \eta p(x)$: known.

4

*u*_δ induced by *g* in the presence of acoustic perturbations localized in the focal spot *D* := *z* + δ*B*:

• Suppose the focal spot D to be a disk and $u \in W^{2,\infty}(D)$. Then,

$$\int_{\partial\Omega} (u_{\delta} - u)g \, d\sigma = |\nabla u(z)|^2 \int_D \sigma(x) \frac{(\nu(x) - 1)^2}{\nu(x) + 1} dx$$
$$+ O(|D|^{1+\beta}),$$

- $O(|D|^{1+\beta}) \leq C|D|^{1+\beta}||\nabla u||_{L^{\infty}(D)}|\nabla^2 u||_{L^{\infty}(D)}$ with C: independent of D and u.
- β : depends only on Ω' , ν , $\sup_{\Omega} \sigma$, $\min_{\Omega} \sigma$.

• Suppose $\sigma \in \mathcal{C}^{0, \alpha}(D)$, $0 \leq \alpha \leq 2\beta \leq 1$. Then

$$\begin{aligned} \mathcal{E}(z) &:= \left(\int_{D} \frac{\left(\nu(x)-1\right)^{2}}{\nu(x)+1} dx\right)^{-1} \int_{\partial\Omega} (u_{\delta}-u) g \, d\sigma \\ &= \sigma(z) \left|\nabla u(z)\right|^{2} + O(|D|^{\alpha/2}). \end{aligned}$$

ε(z): electrical energy density; known function from the boundary measurements.

- ▲ 클 ► - ▲ 클 ►

- Substitute σ by $\mathcal{E}/|\nabla u|^2$.
- Nonlinear PDE (the 0–Laplacian)

$$\left(egin{array}{ll}
abla_{ imes} \cdot \left(rac{\mathcal{E}}{\left|
abla u
ight|^2}
abla u
ight) = 0 & ext{ in } \Omega \ , \ rac{\mathcal{E}}{\left|
abla u
ight|^2} rac{\partial u}{\partial
u} = g & ext{ on } \partial \Omega \ . \end{array}
ight.$$

- g such that u has no critical point inside Ω .
- Choose two currents g_1 and g_2 s.t. $\nabla u_1 \times \nabla u_2 \neq 0$ for all $x \in \Omega$.

- Substitution algorithm.
- Polarized measurements:

$$\mathcal{E}_{ij} := \int_{\partial\Omega} (u_{\delta}^{(j)} - u^{(j)}) g_i \ d\sigma, \quad i, j = 1, 2.$$

$$\begin{cases} \nabla_{\mathsf{x}} \cdot \left(\frac{\mathcal{E}_{jj}}{|\nabla u^{(j)}|^2} \nabla u^{(j)} \right) = 0 \quad \text{in } \Omega \ , \\ \frac{\mathcal{E}_{jj}}{|\nabla u^{(j)}|^2} \frac{\partial u^{(j)}}{\partial \nu} = g_j \quad \text{on } \partial \Omega \ . \end{cases}$$

• Proper set of measurements: (g_1, g_2) s.t.

 $|\nabla u^{(j)}| > 0$; $(\mathcal{E}_{ij})_{i,j}$: invertible in Ω' .

< ∃ →

- Notion of proper set of measurements:
- Let $g_j \in L^2_0(\partial\Omega)$, j = 1, 2 and let $u^{(j)}$ be the voltage potential induced by g_j , in the absence of ultrasonic perturbations, that is,

$$\begin{cases} \nabla \cdot \left(\sigma(x) \nabla u^{(j)} \right) = 0 & \text{ in } \Omega , \\ \\ \sigma \frac{\partial u^{(j)}}{\partial \nu} = g_j & \text{ on } \partial \Omega \end{cases}$$

with the convention that $\int_{\partial\Omega} u^{(j)} = 0$.

Let

$$\mathcal{E}_{jl}[\sigma](x) := \sigma(x) \nabla u^{(j)}(x) \nabla u^{(l)}(x), \quad j, l = 1, 2,$$

and

$$\mathcal{E}[\sigma] := (\mathcal{E}_{jl}[\sigma])_{j,l=1,2}.$$

• (g₁, g₂): proper set of measurements if

- Evidence of the possibility of constructing proper sets of measurements:
- f: smooth function on ∂Ω s.t. there exist P and Q on ∂Ω such that f|_{Γ1} and f|_{Γ2}: one-to-one, where Γ₁ and Γ₂: two parts of ∂Ω, connecting P and Q.
- For all positive and smooth function σ , $\nabla v \neq 0$ in Ω where v:

$$\begin{cases} \nabla \cdot \sigma \nabla v = 0 \quad \text{in } \Omega, \\ v = f \quad \text{on } \partial \Omega \end{cases}$$

• Fix $x_0 \in \Omega$. Let $X \in \Gamma_1$ and $Y \in \Gamma_2$ be s.t.

$$f(X)=f(Y)=v(x_0).$$

- Unique pair due to the one-to-one property of f on Γ_1 and Γ_2 .
- v: continuous and v does not attain local extreme value in Ω ⇒ the level set {x : v(x) = x₀}: curve connecting X and Y.
- Level set divides Ω into two subdomains Ω^{\pm} .
- On Ω^+ , $v > v(x_0)$ and on Ω^- , $v < v(x_0)$.
- Hopf's lemma $\Rightarrow \nabla v(x) \neq 0.$
- No critical points.
- Take any $g_j = \partial v_j / \partial \nu$, j = 1, 2, with f_1 and f_2 satisfying: for all $\alpha \in \mathbb{R}$, there exist P and Q in $\partial \Omega$ s.t. $f_1 \alpha f_2$: one-to-one on each of two curves along $\partial \Omega$ connecting P and Q.
- If $\partial\Omega$ does not contain any line segment, then choose $f_1 = x_1 + M$ and $f_2 = x_2 + M$ for a sufficiently large number M.

- Linearisation:
 - σ : small perturbation of conductivity profile σ_0 : $\sigma = \sigma_0 + \delta \sigma$.
 - $u_0^{(j)}$ and $u^{(j)} = u_0^{(j)} + \delta u^{(j)}$: potentials corresponding to σ_0 and σ with the same Neumann boundary data g_i .
 - $\delta u^{(j)}$ satisfies $\nabla \cdot (\sigma \nabla \delta u^{(j)}) = -\nabla \cdot (\delta \sigma \nabla u_0^{(j)})$ in Ω with the homogeneous Dirichlet boundary condition.

$$\begin{split} \mathcal{E}_{jj} &= (\sigma_0 + \delta\sigma) |\nabla (u_0^{(j)} + \delta u^{(j)})|^2 \\ &\approx \sigma_0 |\nabla u_0^{(j)}|^2 + \delta\sigma |\nabla u_0^{(j)}|^2 + 2\sigma_0 \nabla u_0^{(j)} \cdot \nabla \delta u^{(j)} ; \end{split}$$

• Neglecting $\delta\sigma \nabla u_0^{(j)} \cdot \nabla \delta u^{(j)}$ and $\delta\sigma |\nabla \delta u^{(j)}|^2 \Rightarrow$

$$\delta \sigma \approx \frac{\mathcal{E}_{jj}}{\left|\nabla u_{0}^{(j)}\right|^{2}} - \sigma_{0} - 2\sigma_{0} \frac{\nabla \delta u^{(j)} \cdot \nabla u_{0}^{(j)}}{\left|\nabla u_{0}^{(j)}\right|^{2}}$$

- Substitution algorithm.
 - Start from an initial guess for the conductivity σ ;
 - · Solve the corresponding Dirichlet conductivity problem

$$\begin{cases} \nabla \cdot (\sigma \nabla u_0) = 0 & \text{in } \Omega, \\ u_0 = \psi & \text{on } \partial \Omega \end{cases}$$

- ψ: Dirichlet data measured as a response to the current g = g₁ in absence of elastic deformation;
- Define the discrepancy between the data and the guessed solution by

$$\epsilon_0 := \frac{\mathcal{E}_{11}}{\left|\nabla u_0\right|^2} - \sigma \; .$$

• Introduce the corrector, δu , computed as the solution to

$$\begin{cases} \nabla \cdot (\sigma \nabla \delta u) = -\nabla \cdot (\varepsilon_0 \nabla u_0) & \text{in } \Omega ,\\ \delta u = 0 & \text{on } \partial \Omega ; \end{cases}$$

Update the conductivity

$$\sigma := \frac{\mathcal{E}_{11} - 2\sigma \nabla \delta u \cdot \nabla u_0}{\left| \nabla u_0 \right|^2} \; .$$

• Iteratively update the conductivity, alternating directions of currents (with $g = g_2$ and \mathcal{E}_{11} replaced with \mathcal{E}_{22}).

- Optimal control algorithm
- (g₁, g₂): proper set of measurements.
- σ and $\tilde{\sigma}$ be two \mathcal{C}^1 -conductivities with $\sigma(x_0) = \tilde{\sigma}(x_0)$ for some $x_0 \in \overline{\Omega}$,

$$\|\log \sigma - \log \widetilde{\sigma}\|_{W^{1,\infty}(\Omega)} \leq C \|\mathcal{E}[\sigma] - \mathcal{E}[\widetilde{\sigma}]\|_{W^{1,\infty}(\Omega)}$$
.

 $\bullet \Rightarrow$

$$\operatorname{Ker}(d\mathcal{E}[\sigma])|_{H^{1,\infty}_0(\Omega)} = \{0\},$$

provided that $\sigma > c_0 > 0$ for some constant c_0 .

• For all $h \in W^{1,\infty}_0(\Omega)$,

$$\begin{split} \|d\mathcal{E}[\sigma](h)\|_{W_0^{1,\infty}(\Omega)} &= \lim_{t \to 0} \frac{\|\mathcal{E}[\sigma+th] - \mathcal{E}[\sigma]\|_{W_0^{1,\infty}(\Omega)}}{|t|} \\ &\geq \frac{1}{C} \lim_{t \to 0} \frac{\|\log(\sigma+th) - \log\sigma\|_{W_0^{1,\infty}(\Omega)}}{|t|} \\ &= \frac{1}{C\sigma} \|h\|_{W_0^{1,\infty}(\Omega)} \,. \end{split}$$

Admissible set of conductivities: open subset of W^{1,∞}(Ω)

$$A = \left\{ \sigma \in W^{1,2}(\Omega) : c_0 < \sigma < C_0, |\nabla \sigma| < C_1 \right\}.$$

- For j, l = 1, 2, the map $\sigma \mapsto \mathcal{E}_{jl}[\sigma]$: Fréchet differentiable.
- For $h \in W^{1,2}_0(\Omega)$ s.t. $\sigma + h \in A$,

$$d\mathcal{E}_{jl}[\sigma]h = h\nabla u^{(j)} \cdot \nabla u^{(l)} + \sigma \left[\nabla u^{(j)} \cdot \nabla v^{(l)} + \nabla u^{(l)} \cdot \nabla v^{(j)}\right];$$

 $v^{(j)}$: solution of

$$\left\{ \begin{array}{rcl} \nabla \cdot \sigma \nabla v^{(j)} &=& -\nabla \cdot h \nabla u^{(j)} & \mbox{in } \Omega \,, \\ \\ \sigma \frac{\partial v^{(j)}}{\partial \nu} &=& 0 & \mbox{on } \partial \Omega \,, \\ \\ \\ \int_{\partial \Omega} v^{(j)} = 0 \,. \end{array} \right.$$

- ∢ ≣ ▶

• Minimization problem:

$$\min_{\sigma \in A} J[\sigma] := \frac{1}{2} \sum_{j,l=1}^{2} \int_{\Omega} \left| \mathcal{E}_{jl}[\sigma] - \mathcal{E}_{jl}^{(m)} \right|^{2} dx \,,$$

 $\mathcal{E}_{jl}^{(m)}$: measurements.

• Fréchet derivative of *J*[*σ*]:

$$dJ[\sigma] = \frac{1}{2} \sum_{j,l=1}^{2} (\mathcal{E}_{jl}[\sigma] - \mathcal{E}_{jl}^{(m)}) \nabla u^{(j)} \cdot \nabla u^{(l)} + \sum_{j,l=1}^{2} \nabla u^{(j)} \cdot \nabla p^{(j,l)};$$

• $p^{(j,l)}$: solution of the adjoint problem

$$\left\{ \begin{array}{rcl} \nabla \cdot \sigma \nabla \rho^{(j,l)} &=& -\nabla \cdot (\mathcal{E}_{jl}[\sigma] - \mathcal{E}_{jl}^{(m)}) \sigma \nabla u^{(l)} & \text{ in } \Omega \,, \\ \\ \sigma \, \frac{\partial \rho^{(j,l)}}{\partial \nu} &=& 0 & \text{ on } \partial \Omega \,, \\ \\ \int_{\partial \Omega} \rho^{(j,l)} = 0 \,. \end{array} \right.$$

- For $\sigma \in A$,
 - $h \mapsto \nabla v^{(j)} : W_0^{1,2}(\Omega) \to L^2(\Omega)$: compact.
 - $d\mathcal{E}_{jl}$ takes the form l + compact, up to a multiplication by a continuous function.
- Proof:

$$\begin{array}{ll} h \in H^1_0(\Omega). \ v^{(j)} \ \text{satisfies} \\ -\sigma \Delta v^{(j)} &= \nabla \sigma \cdot \nabla v^{(j)} + \nabla \cdot h \nabla u^{(j)} \,, \\ &= \nabla \sigma \cdot \nabla v^{(j)} + h \Delta u^{(j)} + \nabla h \cdot \nabla u^{(j)} \,, \\ &= \nabla \sigma \cdot \nabla v^{(j)} - h \frac{\nabla \sigma \cdot \nabla u^{(j)}}{\sigma} + \nabla h \cdot \nabla u^{(j)} \in L^2(\Omega) \,. \end{array}$$

- $\Rightarrow v^{(j)} \in H^2(\Omega)$ and its H^2 -norm: bounded by $\|h\|_{H^1_0(\Omega)}$.
- Compact embeddings

$$H^2(\Omega) \hookrightarrow H^1(\Omega) \hookrightarrow L^2(\Omega)$$
.

• $\mathcal{E}[\sigma]^{-1} d\mathcal{E}[\sigma] = I + \text{compact operator.}$

• ⇒

 $\|d\mathcal{E}[\sigma]\|_{\mathcal{L}(H^1_0(\Omega),L^2(\Omega))} \ge C$.

• Convergence of the Landweber iteration scheme:

- Assume that $\sigma^{(0)}$: good initial guess for σ_* .
- As $n \to +\infty$, the sequence

 $\sigma^{(n+1)} = T\sigma^{(n)} - \eta d\mathcal{E}^*[T\sigma^{(n)}](\mathcal{E}[\sigma^{(n)}] - \mathcal{E}^{(m)})$

converges to σ_* ; T: Hilbert projection of $H^1(\Omega)$ onto A; σ_* : true conductivity distribution, η : step size; $\mathcal{E}^{(m)} = (\mathcal{E}_{jl}^{(m)})_{j,l=1,2}$.

Reconstruct the conductivity distribution knowing the internal energies:

- Linearized versions of the nonlinear (zero-Laplacian) PDE problems.
- Optimal control approach: minimize over the conductivity the discrepancy between the computed and reconstructed internal energies.
- Optimal control approach: more efficient approach specially with incomplete internal measurements of the internal energy densities.
- Resolution of order the size of the focal spot + stability (wrt measurement noise).
- Exact inversion formulas: derivatives of the data ⇒ used only to obtain a good initial guess.