Spring Term 2017

ETH Zürich D-MATH

Numerical Analysis II

End Term Spring 2017

Problem 1 [28 Marks]

Consider

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = f(t, x), & t \in [0, T] \\ x(0) = x_0 \in \mathbb{R} \end{cases}$$
(1.1)

with $f \in C^{\infty}$ subject to the Lipschitz condition $|f(t,x) - f(t,y)| \leq C|x-y|$ for $\forall x,y \in \mathbb{R}$, $\forall t \in [0,T]$.

We use the following numerical scheme for (1.1):

$$x^{k+1} = x^{k-1} + 2\Delta t f(t_k, x^k) \tag{1.2}$$

(1a) Define the Truncation error by

$$T_k(\Delta t) = \frac{x(t + \Delta t) - x(t - \Delta t) - 2\Delta t f(t, x)}{2\Delta t},$$

prove that the scheme (1.2) is of order 2.

(1b)	What kind of method (1.2) is?			
	Explicit One-step \square Explicit Two-step \square Implicit One-step \square Implicit Two-step \square			
(1c)	Is scheme (1.2) consistent with (1.1)? Prove that.			
(1d) ferent	Suppose that $\{x^2, \dots, x^k\}$ and $\{\tilde{x}^2, \dots, \tilde{x}^k\}$ have been generated by (1.2) but with distinitial data x^0, x^1 and \tilde{x}^0, \tilde{x}^1 . Prove by induction that			
	$ x^k - \tilde{x}^k \le C \max\{ x^0 - \tilde{x}^0 , x^1 - \tilde{x}^1 , \cdots, x^{k-1} - \tilde{x}^{k-1} \}.$			
Is (1.2	2) stable? Prove that.			

(1e)	Is (1.2) convergent? Prove that.	
Probl	lem 2	[13 Marks]
Consid	der the scheme $x^{k+1} = x^k + rac{\Delta t}{2}(\kappa_1 + \kappa_2)$	(2.1
where	2	
	$\kappa_1 = f(t_k, x^k),$ $\kappa_2 = f(t_{k+1}, x^k + \Delta t \kappa_1).$	
(2a)	Is (2.1) a one-step method or two-step method?	
	One-step method \square Two-step Method \square	

(2b) Define the truncation error by

$$T_k(\Delta t) = \frac{x(t + \Delta t) - x(t)}{\Delta t} - \frac{1}{2} [f(t, x(t)) + f(t + \Delta t, x(t) + \Delta t f(t, x(t)))].$$

Prove that (2.1) is consistent and of at least order 2 by either direct calculation or properties from Runge-Kutta method. Attention: Please write out coefficients $\{a_{ij}\}$, $\{b_i\}$, $\{c_i\}$ and order conditions explicitly(no need to prove) if choosing to use RK properties.

Problem 3	[19 Mark]
Consider the Hemiltonian exetem	

Consider the Hamiltonian system

$$\begin{cases} \frac{dp}{dt} = -q, \\ \frac{dq}{dt} = p, \end{cases}$$
(3.1)

where $p(t), q(t) \in \mathbb{R}$ and the numerical scheme

$$\begin{cases}
 p^{k+1} = p^k - \Delta t q^k \\
 q^{k+1} = q^k + \Delta t p^{k+1}.
\end{cases}$$
(3.2)

(3a) What kind of method (3.2) is?

 $\begin{array}{ll} \text{Explicit Euler method} \ \square & \text{Implicit Euler method} \ \square \\ \text{Explicit Leapfrog method} \ \square & \text{Implicit Leapfrog method} \ \square \\ \end{array}$

(3b) Define the numerical flow $\Phi_{\Delta t}:(p^k,q^k)\mapsto (p^{k+1},q^{k+1})$. Prove that (3.2) is symplectic, i.e., the numerical flow satisfies

$$(\Phi'_{\Delta t})^T J \Phi'_{\Delta t} = J, \quad \text{where } J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}.$$

3c)	Is the Hamiltonian H associated with (3.1) preserved by the scheme (3.2)? Prove that.