H. Ammari Spring Term 2022 ETH Ziirich

K. Alexopoulos Numerical Analysis 11 D-MATH

Problem Sheet 1

Problem 1.1 Simple Pendulum

(1.1a) A simple pendulum is one which can be considered to be a point mass suspended from
a string or rod of negligible mass. Denote

* [= length of the rod/string in meters
* m = mass of the point mass in kilograms

e g = accelaration due to gravity = 9.81007m/s? according to Wikipedia.

mass m

mg

Figure 1.1: Simple pendulum

Using Newton’s laws of motion, show that the angle 6(t), expressed as a function of time, satisfies

the differential equation

gsinf
l

0= — . (1.1.1)

Solution: Fix the coordinate system as shown in Figure 1.2. Let (z(t), y(¢)) denote the position
of the point mass at time ¢. By Newton’s second law, we have that

d?z
F$ = m@,
d?y
Fy = m@

Problem Sheet 1 Page 1 Problem 1.1

https://en.wikipedia.org/wiki/Gravity_of_Earth

mass m

X mg

Figure 1.2: Coordinate system

Decomposing the forces acting on the mass gives the system

F, =mg— T cos#,
F, = —Tsin0.

Notice that (x, y) must obey the geometric constraints
x =1lcosd,
y = lsinf.

Taking the derivative of (x, y) with respect to ¢, we have

i = —[sin 66,
i = —lcos06* — [sin Qé,
Yy =l cos 06,

§j = —lsin00% + 1 cos 00.
Combining everything together, we reach

—m(l cos 062 + 1sin 06) = mg — T cos 0,
m(—1sin09* + I cos 00) = —T sin 6.

After eliminating 7', the equation system becomes

ml(sin? 0 + cos® 0)0 = —mgsin 6,

that is 10
é:—gfl. (1.1.2)

(1.1b) Write a Python script that solves your ODE for the initial conditions 6(0) = 7/4,
6(0) = 0. Plot the solution #(t) for ¢ € [0, 10].

HINT: You may need to convert the second-order ODE into first-order ODE system to use the
ODE solver.

Solution:

Problem Sheet 1 Page 2 Problem 1.1

Listing 1.1: simplependulum.py

import numpy as np
from scipy.integrate import ode
import matplotlib.pyplot as plt

def g():
return 9.81007
def 1():
return 1.0
def fun(t, vy):
return np.array ([y[1l], - g() * np.sin(y[0])/1()])

t0, tl1 = 0, 10 # start and end
t = np.linspace (t0, tl1, 100) # the points of
evaluation of solution
y0 = [np.pi/4, 0] # initial wvalue
y = np.zeros ((len(t), len(y0))) # array for solution
y[0, :]1 = y0
r = ode (fun)
r.set_initial_value(y0, tO0) # set initial wvalues
for i in range (1, t.size):
y[i, :] = r.integrate(t[i]) # compute each time step

plt.plot(t, y[:,0])
plt.show ()

0.8 A

0.6 A

0.4 A

0.2 A

0.0 A

—-0.21

—-0.41

—-0.6 1

—0.8 A

0 2 4 6 8 10

Figure 1.3: Plot of 0(t), from simplependulum.py

(1.1¢) Recall the Taylor expansion of sinf = 6 — g—? + ‘95—? + Thus, if 6 is small we can
substitute sin & ~ 6 in our equation (1.1.1). Repeat the analysis of (1.1b) for the approximated

Problem Sheet 1 Page 3 Problem 1.1

equation:

. 0

b — —97. (1.1.3)
Now, consider the case where 0(0) ~ T, i.e: pendulum is almost inverted. If we let ¢ = 6 — 7
then we have that sinf) = —sing = —¢ + ﬁ—f — ‘é—? + ... whenever ¢ ~ 0.

Using a small angle approximation around 7, solve the ODE and plot the solution in the case that
0(0) = 37 /4,0(0) = 0. What’s wrong?

Solution: (1.1.3) is solved using simplependulumapprox.py, the solution is shown in
Figure 1.4.

Listing 1.2: simplependulumapprox.py

I |import numpy as np

» |from scipy.integrate import ode

3 |import matplotlib.pyplot as plt

s

s |def g():

6 return 9.81007

7 |def 1():

8 return 1.0

o |[def fun(t, y):

10 return np.array([y[1l], — g() = y[0]/1(0)1)

n|t0, tl = 0, 10 # start and end

2 |t = np.linspace (t0, tl1, 100) # the points of
evaluation of solution

3 |y0 = [np.pi/4, 0] # initial value

4|y = np.zeros ((len(t), len(y0))) # array for solution

s |ly[0,] = y0

6 |r = ode (fun)

7 |r.set_initial_value(y0, tO0) # set initial values

s [for 1 in range(l, t.size):

19 y[i, :] = r.integrate(t[i]) # compute each time step

0 |plt.plot(t, y[:,0])

2 |plt.show ()

When the pendulum is almost inverted, its small angle approximation equation is:

99
l)

where ¢ = #—m. This is solved using simplependulumapproxinverted. py, the solution

is shown in Figure 1.5. The reason that the outcome is wrong is that the direction of the force T’

(as shown in Figure 1.2) is different in the cases # > 7/2 and 0 < 7/2.

b=

Listing 1.3: simplependuluminverted.py

1 |import numpy as np
> |from scipy.integrate import ode
3 |import matplotlib.pyplot as plt

Problem Sheet 1 Page 4 Problem 1.1

0.8 -

0.6

0.4

0.2 1

0.0 4

—0.2 1

—0.4 A

—0.6 -

—0.8 1

Figure 1.4: Plot of approximated 6(t), from simplependulumapprox.py

def g():
return 9.81007
def 1():
return 1.0
def fun(t, vy):
return np.array([y[1], g() * y[0]/1()])
t0, tl = 0, 10 # start and end
t = np.linspace (t0, tl1, 100) # the points of
evaluation of solution
y0 = [-np.pi/4, 0] # initial value
y = np.zeros ((len(t), len(y0))) # array for solution
y[0, :1 = y0
r = ode (fun)
r.set_initial_value(y0, tO0) # set initial values
for i in range(l, t.size):
y[i, :] = r.integrate(t[i]) # compute each time step
plt.plot(t, y[:,0]+np.pi)
plt.show ()

Problem 1.2 Population dynamics

In biological applications, the population P of certain organisms at time ¢ is sometimes assumed

to obey the equation

dpP P

— =aP(l1 - = 1.2.1
where a and E are positive constants. This model is sometimes called the logistic growth model.

P needs to be non-negative.

Problem Sheet 1 Page 5 Problem 1.2

lel3

0.0 -

—0.2 1

—0.4 1

—0.6 1

—0.8 1

—1.0 A1

-1.2 1

—1.4 1

—1.6 1

Figure 1.5: Plot of §(¢) for the inverted pendulum, from simplependuluminverted.py

(1.2a) Find the equilibrium solutions, i.e. solutions that do not vary in time.

Solution: An equilibrium solution is such that Cil—f =0,thus P=0or P = E.

(1.2b) For which values of P is P increasing or decreasing as a function of ¢? Using (1.2.1),
find an expression for &P in terms of P and the constants a and E. For which values of P is P

de?
d2p d2p

convex (W > O) or concave (ﬁ < O) as a function of ¢?

Solution: P is monotone increasing in the region region 0 < P < E and monotone decreasing
if P> E.

The second derivative of P is

@P_ ddp
A2 dt dt
_(G_Zap>£
- E 7 dt
2P P
=a*P(1 - =) (1 — =).
*P(1—)1 - 7)

So, P is convex when P > F or 0 < P < F/2 and P is concave when F/2 < P < E.

(1.2¢) Let £ =100 and a = 0.1. Write a Python script to solve (1.2.1) and plot the graph of P
as a function of ¢ over the interval [0, 100]. Use P, = 10 and P, = 150 as initial values, plotting
the two curves on the same axes. What’s the behaviour of P as ¢t becomes large?

Solution:

See population.py and Figure 1.6.

Listing 1.4: population.py

1 |import numpy as np

Problem Sheet 1 Page 6 Problem 1.2

20

21

22

from scipy.integrate import ode
import matplotlib.pyplot as plt
def E():
return 100
def al():
return 0.1
def fun(t, vy):
return a()xy*(1-y/E())
t0, tl1l = 0, 100 # start and end
t = np.linspace (t0, tl1, 100) # the points of
evaluation of solution
init = [10, 150] # initial wvalues
y = np.zeros ((len(t),len(init))) # array for solution
for i in range(len(init)):
y[0, 1] = init[i]
r = ode (fun)
r.set_initial_value(init[i], tO) # set initial
values
for j in range (1, t.size):
v[J,1i] = r.integrate(t[7j]) # compute each time
step
plt.plot(t, v)
plt.show ()
140 A
120 A
100 A
80 1
60 4
40 -
20 A
(I) 2I0 4I0 6I0 8I0 l(l)O

Figure 1.6: Population P(t), for initial values Py = 10 and P, = 150.

For large ¢, both solutions converge to 100, which is the positive equilibrium solution (since
E =100).

Problem Sheet 1 Page 7 Problem 1.2

Published on 2 March 2022.
To be submitted by 10 March 2022.

Problem Sheet 1 Page 8 Problem 1.2

	Problem Sheet 1
	1.1 Simple Pendulum
	1.2 Population dynamics

