
H. Ammari
K. Alexopoulos

Spring Term 2022

Numerical Analysis II
ETH Zürich

D-MATH

Problem Sheet 1

Problem 1.1 Simple Pendulum
(1.1a) A simple pendulum is one which can be considered to be a point mass suspended from
a string or rod of negligible mass. Denote

• l = length of the rod/string in meters

• m = mass of the point mass in kilograms

• g = accelaration due to gravity = 9.81007m/s2 according to Wikipedia.

Figure 1.1: Simple pendulum

Using Newton’s laws of motion, show that the angle θ(t), expressed as a function of time, satisfies
the differential equation

θ̈ = −g sin θ
l

. (1.1.1)

Solution: Fix the coordinate system as shown in Figure 1.2. Let (x(t), y(t)) denote the position
of the point mass at time t. By Newton’s second law, we have that

Fx = m
d2x

dt2
,

Fy = m
d2y

dt2
.

Problem Sheet 1 Page 1 Problem 1.1

https://en.wikipedia.org/wiki/Gravity_of_Earth

Figure 1.2: Coordinate system

Decomposing the forces acting on the mass gives the system{
Fx = mg − T cos θ,

Fy = −T sin θ.

Notice that (x, y) must obey the geometric constraints{
x = l cos θ,

y = l sin θ.

Taking the derivative of (x, y) with respect to t, we have

ẋ = −l sin θθ̇,
ẍ = −l cos θθ̇2 − l sin θθ̈,
ẏ = l cos θθ̇,

ÿ = −l sin θθ̇2 + l cos θθ̈.

Combining everything together, we reach

−m(l cos θθ̇2 + l sin θθ̈) = mg − T cos θ,

m(−l sin θθ̇2 + l cos θθ̈) = −T sin θ.

After eliminating T , the equation system becomes

ml(sin2 θ + cos2 θ)θ̈ = −mg sin θ,

that is
θ̈ = −g sin θ

l
. (1.1.2)

(1.1b) Write a Python script that solves your ODE for the initial conditions θ(0) = π/4,
θ̇(0) = 0. Plot the solution θ(t) for t ∈ [0, 10].

HINT: You may need to convert the second-order ODE into first-order ODE system to use the
ODE solver.

Solution:

Problem Sheet 1 Page 2 Problem 1.1

Listing 1.1: simplependulum.py
1 import numpy as np
2 from scipy.integrate import ode
3 import matplotlib.pyplot as plt
4

5 def g():
6 re turn 9.81007
7 def l():
8 re turn 1.0
9 def fun(t, y):

10 re turn np.array([y[1], - g() * np. s i n(y[0])/l()])
11 t0, t1 = 0, 10 # start and end
12 t = np. l i n s p a c e(t0, t1, 100) # the points of

evaluation of solution
13 y0 = [np.pi/4, 0] # initial value
14 y = np.z e r o s((len(t), len(y0))) # array f o r solution
15 y[0, :] = y0
16 r = ode(fun)
17 r.set_initial_value(y0, t0) # s e t initial values
18 f o r i in range(1, t. s i z e):
19 y[i, :] = r.integrate(t[i]) # compute each time step
20 plt.p l o t(t, y[:,0])
21 plt.show()

0 2 4 6 8 10
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Figure 1.3: Plot of θ(t), from simplependulum.py

(1.1c) Recall the Taylor expansion of sin θ = θ − θ3

3!
+ θ5

5!
+ Thus, if θ is small we can

substitute sin θ ≈ θ in our equation (1.1.1). Repeat the analysis of (1.1b) for the approximated

Problem Sheet 1 Page 3 Problem 1.1

equation:

θ̈ = −gθ
l
. (1.1.3)

Now, consider the case where θ(0) ≈ π, i.e. pendulum is almost inverted. If we let φ = θ − π
then we have that sin θ = − sinφ = −φ+ φ3

3!
− φ5

5!
+ . . . whenever φ ≈ 0.

Using a small angle approximation around π, solve the ODE and plot the solution in the case that
θ(0) = 3π/4, θ̇(0) = 0. What’s wrong?

Solution: (1.1.3) is solved using simplependulumapprox.py, the solution is shown in
Figure 1.4.

Listing 1.2: simplependulumapprox.py
1 import numpy as np
2 from scipy.integrate import ode
3 import matplotlib.pyplot as plt
4

5 def g():
6 re turn 9.81007
7 def l():
8 re turn 1.0
9 def fun(t, y):

10 re turn np.array([y[1], - g() * y[0]/l()])
11 t0, t1 = 0, 10 # start and end
12 t = np. l i n s p a c e(t0, t1, 100) # the points of

evaluation of solution
13 y0 = [np.pi/4, 0] # initial value
14 y = np.z e r o s((len(t), len(y0))) # array f o r solution
15 y[0, :] = y0
16 r = ode(fun)
17 r.set_initial_value(y0, t0) # s e t initial values
18 f o r i in range(1, t. s i z e):
19 y[i, :] = r.integrate(t[i]) # compute each time step
20 plt.p l o t(t, y[:,0])
21 plt.show()

When the pendulum is almost inverted, its small angle approximation equation is:

φ̈ =
gφ

l
,

where φ = θ−π. This is solved using simplependulumapproxinverted.py, the solution
is shown in Figure 1.5. The reason that the outcome is wrong is that the direction of the force T
(as shown in Figure 1.2) is different in the cases θ > π/2 and θ < π/2.

Listing 1.3: simplependuluminverted.py
1 import numpy as np
2 from scipy.integrate import ode
3 import matplotlib.pyplot as plt

Problem Sheet 1 Page 4 Problem 1.1

0 2 4 6 8 10
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Figure 1.4: Plot of approximated θ(t), from simplependulumapprox.py

4

5 def g():
6 re turn 9.81007
7 def l():
8 re turn 1.0
9 def fun(t, y):

10 re turn np.array([y[1], g() * y[0]/l()])
11 t0, t1 = 0, 10 # start and end
12 t = np. l i n s p a c e(t0, t1, 100) # the points of

evaluation of solution
13 y0 = [-np.pi/4, 0] # initial value
14 y = np.z e r o s((len(t), len(y0))) # array f o r solution
15 y[0, :] = y0
16 r = ode(fun)
17 r.set_initial_value(y0, t0) # s e t initial values
18 f o r i in range(1, t. s i z e):
19 y[i, :] = r.integrate(t[i]) # compute each time step
20 plt.p l o t(t, y[:,0]+np.pi)
21 plt.show()

Problem 1.2 Population dynamics
In biological applications, the population P of certain organisms at time t is sometimes assumed
to obey the equation

dP

dt
= aP (1− P

E
), (1.2.1)

where a and E are positive constants. This model is sometimes called the logistic growth model.
P needs to be non-negative.

Problem Sheet 1 Page 5 Problem 1.2

0 2 4 6 8 10
1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
1e13

Figure 1.5: Plot of θ(t) for the inverted pendulum, from simplependuluminverted.py

(1.2a) Find the equilibrium solutions, i.e. solutions that do not vary in time.

Solution: An equilibrium solution is such that dP
dt

= 0, thus P = 0 or P = E.

(1.2b) For which values of P is P increasing or decreasing as a function of t? Using (1.2.1),
find an expression for d2P

dt2
in terms of P and the constants a and E. For which values of P is P

convex
(

d2P
dt2

> 0
)

or concave
(

d2P
dt2

< 0
)

as a function of t?

Solution: P is monotone increasing in the region region 0 < P < E and monotone decreasing
if P > E.

The second derivative of P is

d2P

dt2
=

d

dt

dP

dt

= (a− 2aP

E
)
dP

dt

= a2P (1− 2P

E
)(1− P

E
).

So, P is convex when P > E or 0 < P < E/2 and P is concave when E/2 < P < E.

(1.2c) Let E = 100 and a = 0.1. Write a Python script to solve (1.2.1) and plot the graph of P
as a function of t over the interval [0, 100]. Use P0 = 10 and P1 = 150 as initial values, plotting
the two curves on the same axes. What’s the behaviour of P as t becomes large?

Solution:

See population.py and Figure 1.6.

Listing 1.4: population.py
1 import numpy as np

Problem Sheet 1 Page 6 Problem 1.2

2 from scipy.integrate import ode
3 import matplotlib.pyplot as plt
4

5 def E():
6 re turn 100
7 def a():
8 re turn 0.1
9 def fun(t, y):

10 re turn a()*y*(1-y/E())
11 t0, t1 = 0, 100 # start and end
12 t = np. l i n s p a c e(t0, t1, 100) # the points of

evaluation of solution
13 init = [10, 150] # initial values
14 y = np.z e r o s((len(t),len(init))) # array f o r solution
15 f o r i in range(len(init)):
16 y[0, i] = init[i]
17 r = ode(fun)
18 r.set_initial_value(init[i], t0) # s e t initial

values
19 f o r j in range(1, t. s i z e):
20 y[j,i] = r.integrate(t[j]) # compute each time

step
21 plt.p l o t(t, y)
22 plt.show()

0 20 40 60 80 100

20

40

60

80

100

120

140

Figure 1.6: Population P (t), for initial values P0 = 10 and P1 = 150.

For large t, both solutions converge to 100, which is the positive equilibrium solution (since
E = 100).

Problem Sheet 1 Page 7 Problem 1.2

Published on 2 March 2022.
To be submitted by 10 March 2022.

Problem Sheet 1 Page 8 Problem 1.2

	Problem Sheet 1
	1.1 Simple Pendulum
	1.2 Population dynamics

