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Problem 4.1 Discrete Gronwall Lemma
Prove the discrete Gronwall Lemma for constant h:

If the sequence (ξk)k∈N0
, ξk ≥ 0 satisfies the inequality

ξk+1 ≤ Chp+1 + (1 + Lh)ξk, k ∈ N0, C, h ≥ 0, L > 0, p ∈ N∗

then
ξk ≤ Chp

1

L

(
ekLh − 1

)
+ ekLh · ξ0, k ∈ N0.

HINT: Show, by induction, that

ξk ≤
Chp

L

[
(1 + Lh)k − 1

]
+ (1 + Lh)kξ0

and use the convexity of the exponential function.

Problem 4.2 Exponential of matrices
Let A,B be two d× d matrices (d ≥ 2). Consider x(t) ∈ Rd solution to

dx

dt
= u(t)Ax(t) + (1− u(t))Bx(t),

x(0) = x0,
(4.2.1)

where u : t 7→ u(t) ∈ [0, 1] is a continuous function.

(4.2a) Prove using Cauchy-Lipschitz theorem that, for all u, there exists a unique solution x of
Eqn. (4.2.1).

(4.2b) Verify that the solution of 
dx

dt
= Ax(t),

x(0) = x0,

is given by x(t) = etAx0 where etA :=
∑

n≥0
(tA)n

n!
.

(4.2c) Suppose that u(t) = χE(t) ∈ {0, 1} is the characteristic function of

E = ∪n≥0[t2n, t2n+1] ⊂ [0, T ]

where (tn)n≥0 is a strictly increasing sequence of real numbers in [0, T ] with t0 = 0. Give an
expression of x(t) on each interval [tn, tn+1], n = 0, 1 · · · . x(t) has to be continuous. Simplify
this expression if [A,B] = AB −BA = 0 (i.e., A and B commute).
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(4.2d) Let d = 2 and let

A =

(
1 0
0 −1

)
, B =

(
0 1
1 0

)
.

(i) Compute, for s, t > 0, etA and esB.

(ii) Do A and B commute?

(iii) Verify that etAesB 6= esBetA.

(iv) Verify that etAesB 6= etA+sB.

Problem 4.3 Linear System
Consider 

dx

dt
= A(δ, µ)x(t) on [0, T ]

x(0) =

(
0
1

) (4.3.1)

where

A(δ, µ) =

(
−δ 1
0 −µ

)
and δ, µ are positive parameters.

(4.3a) Solve this problem explicitly when µ = δ.

(4.3b) Solve it when µ 6= δ.

(4.3c) Show explicitly that, for any fixed t > 0, if we take the limit as µ→ δ, the two solutions
become the same.

Problem 4.4 Second-order ODE
(4.4a) Consider the linear second-order ODE on [1, 2] with parameter β:

t2
d2x(t)

dt2
+ t

dx(t)

dt
− β2x(t) = 0

x(t = 1) = 1

dx

dt
(t = 1) = 0

Verify that x(t) = cosh(β log t) is the solution to the IVP. Is it a continuous function of β? Can it
be differentiated with respect to β?

Problem 4.5 Exponential of Matrix
Let

A =

(
1 2
0 1

)
, B =

(
0 3
1 4

)
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(4.5a) Use Python to calculate exp(A), exp(B) and exp(A+B). Is exp(A) exp(B) = exp(A+
B)?

HINT: To calculate the exponential of matrix, use expm from the scipy.linalg package.

(4.5b) Now let

C =

(
2 −3
0 2

)
,

use Python to calculate exp(A) exp(C) and exp(A+C). Is exp(A) exp(C) = exp(A+C)? Can
you briefly explain the reason?

(4.5c) Use Python to calculte the eigenvalues of exp(A) exp(B) and exp(A + B). Do they
have the same eigenvalues?

HINT: Use eig from the package numpy.linalg to calculate eigenvalues for matrices in
Python.
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