# Numerical Analysis II

## Problem Sheet 7

### Problem 7.1 Error estimate for the trapezium rule method

We consider the trapezium rule method

$$x_{n+1} = x_n + \frac{1}{2}h(f_{n+1} + f_n).$$

for the numerical solution of the initial value problem

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(t, x),$$

where  $x_0 = x(0)$  is given,  $f_n = f(t_n, x_n)$  and  $h = t_{n+1} - t_n$ . Let us define the truncation error  $T_n$  as

$$T_n := \frac{x(t_{n+1}) - x(t_n)}{h} - \frac{1}{2} \Big( f(t_{n+1}, x(t_{n+1})) + f(t_n, x(t_n)) \Big).$$

**(7.1a)** Show that

$$T_n = -\frac{1}{12}h^2x'''(\xi_n),$$

for some  $\xi_n$  in the interval  $(t_n, t_{n+1})$ , where x is the solution of the initial value problem.

HINT: Apply integration by parts to the integral

$$\int_{t_n}^{t_{n+1}} (t - t_{n+1})(t - t_n)x'''(t)dt.$$

(7.1b) Suppose that f satisfies the Lipschitz condition

$$|f(t,x) - f(t,y)| \le L|x - y|$$

for all real t, x, y, where L is a positive constant independent of t. Suppose also that there exists some constant M such that  $|x'''(t)| \leq M$  for all t. Show that the global error  $e_n = x(t_n) - x_n$  satisfies the inequality

$$|e_{n+1}| \le |e_n| + \frac{1}{2}hL(|e_{n+1}| + |e_n|) + \frac{1}{12}h^3M.$$

(7.1c) For a uniform step h satisfying hL < 2 deduce that, if  $x_0 = x(t_0)$ , then

$$|e_n| \le \frac{h^2 M}{12L} \left[ \left( \frac{1 + \frac{1}{2}hL}{1 - \frac{1}{2}hL} \right)^n - 1 \right].$$

#### **Problem 7.2** Truncation Error

Consider using a one-step method for the numerical solution of the initial value problem  $x' = f(t, x), x(t_0) = x_0, f : \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$ . The method is given by

$$x_{n+1} = x_n + \frac{1}{2}h(k_1 + k_2),$$

where

$$k_1 = f(t_n, x_n),$$
 and  $k_2 = f(t_n + h, x_n + hk_1).$ 

Show that the method is consistent and has truncation error

$$T_n = \frac{1}{6}h^2 \left( f_x(f_t + f_x f) - \frac{1}{2}(f_{tt} + 2f_{tx} f + f_{xx} f^2) \right) + O(h^3)$$

#### **Problem 7.3 Roundoff Error Effects**

In practical situations, computers always round off real numbers. In numerical methods rounding errors become important when the step size  $\Delta t$  is comparable with the precision of the computations. Thus, if taking rounding error into consideration, the Explicit Euler method will become the following perturbed scheme:

$$x^{k+1} = x^k + \Delta t f(t_k, x^k) + (\Delta t)\mu^k + \rho^k,$$

where  $\mu^k$  and  $\rho^k$  represent the errors in f and in the assembling, respectively. Assume that  $|\mu^k| \leq \mu$  and  $|\rho^k| \leq \rho$  for all  $k = 0, 1, 2, \ldots$  and  $f \in C^1$ . Let  $e^k := x(t_k) - x^k$ , and try to prove that

$$|e^{k+1}| \le (1 + \Delta tC)|e^k| + \Delta t\mu + \rho + \sup_{\xi \in [t_k, t_{k+1}]} |Df(\xi)| \frac{1}{2} (\Delta t)^2,$$

and hence

$$|e^k| \le e^{CT}|e^0| + \frac{\mu e^{CT}}{C} + \frac{\rho e^{CT}}{C\Delta t} + \frac{1}{2C} \sup_{\xi \in [0,T]} |Df(\xi)|e^{CT}\Delta t,$$

where C is the Lipschitz constant for f, and Df denotes the differentiation to f where f(t, x(t)) is regarded as a function with single parameter t.

Introduce

$$\phi(\Delta t) = \frac{\rho e^{CT}}{C\Delta t} + \frac{1}{2C} \sup_{\xi \in [0,T]} |Df(\xi)| e^{CT} \Delta t,$$

when does  $\phi$  attain its minimum, and therefore what suggestion do you have for the minimal step size  $\Delta t$ ? HINT: Use the the arithmetic mean–geometric mean inequality to find a bound for  $\phi$ .

Published on 13 April 2022.

To be submitted by 28 April 2022.

Last modified on April 13, 2022