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Problem 7.1 Error estimate for the trapezium rule method

We consider the trapezium rule method

1
Tn+l = Tp + éh(fn—&-l + fn)

for the numerical solution of the initial value problem

dx
E = f(tax)a

where xy = z(0) is given, f, = f(t,,z,) and h = t,,1 — t,,. Let us define the truncation error
T, as
(tpyr) —x(t,) 1

T, = - . §<f(tn+1,x(tn+1)) + f(tn,:c(tn))).

(7.1a) Show that
1
T — — 2 .
)= — b (6,

for some &, in the interval (¢,,,t,,+1), where x is the solution of the initial value problem.

HINT: Apply integration by parts to the integral

tn+1
/ (t =ty )t — t)2" (1)t
t7l

Solution: Using integration by parts, we get

tnt1 tn+1
/ (t — tper)(t — tn)2" (t)dt = —/ (2t — t, — tpyr)2" (t)dt
tn ln
tn tn+1
t / 20! (t)dt
t tn

= —(2t —ty — tns1)2' (1)
= —ha'(tpy1) — ha'(t,) + 2(x(tnsr) — 2(tn))

= =St 2t 1)) + (b 2(ta)) + 2o (tnn) = 2(t0))
= 21T,

By applying the mean value theorem for integrals, there exists &, € (t,, t,+1) such that

tnt1 tnat 1
/ (t - tn+1)(t — tn)ib'm(t)dt = x”’(fn) /t (t — tn+1)(t _ tn>dt — _éth///<£n)

and the conclusion follows.
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(7.1b)  Suppose that f satisfies the Lipschitz condition

for all real ¢, z, y, where L is a positive constant independent of ¢. Suppose also that there exists
some constant M such that |2”(¢)| < M for all t. Show that the global error e, = x(t,) — x,
satisfies the inequality

1 1
lens1] < len] + éhL(|en+1| + lenl) + EhSM-

Solution: Let us denote
1
(I)(tn, $n) = §(f(tn, .CCn) —+ f(thrla $n+1))

and

Bt 2) 1= 5 (F(tns2(00) + S (i 2(tasr))
Since
Tpi1 — Ty = hP(t,, ),
we have that
en = x(ty) — Tp

= [B(tn) — (CBO + i:(xk+1 — fL’k)>

k=0
= ﬂf(tn> — (130 + h@(to,&lo) + hq)(tl, .lel) + ...+ h(p(tnfl, ﬂj‘nfl)).

Thus,
eni1 — €n = T(thi1) — x(ty) — h®(t,, )

:h(xQMJE—x@@__5@“@>+4(¢@mx)_¢@mx@)

— IT, + h(EIS(tn,x) - @(tn,xn)).

We will deal with these two terms separately. We have, from the Lipschitz condition of f, that

|D(t,, ) — P(tn, )]

=[S Carn(t) + s, a) = 5700 + s i)

< (17 (b 2(t0)) = F b )|+ | f (b, 2(t012) = (i, 200
L

< 3 eal + leasi):

2
From (7.1a) and the assumption that |2"(t)| < M, we get

1
T,| < —h*M.
Tl <33

Therefore, the conclusion follows.
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(7.1c)  For a uniform step h satisfying h L < 2 deduce that, if 2o = x(t(), then

M /1+in\"
len| < ? —1].
12L | \1—2hL

Solution: Since 1 — %hL > (), rearranging the result from (7.1b) gives us that

1+ hL 11
1l < —2—le,| + ————h3M.
ol < Tl T
Recall, also, that ey = 0.
In Assignment 5, we saw that, if a,,. 1 < ra, + b, then
n r—1
a, <r"ag+b )
r—1
By applying this inequality to e,,, we obtain
1 1 1+ 1hL\" 1+ ihL -
len)| < —F—=KM(|—2—] —1)|—2—-1]) . (7.1.1)
1—35hL12 — shL — 3hL
Then, since
1 -1 1
1+5hL_1 :1—§hL
1-— %hL hL

the conclusion follows.

Problem 7.2 Truncation Error

Consider using a one-step method for the numerical solution of the initial value problem z' =
f(t,x), z(ty) = zo, f : Ry x R — R. The method is given by

1
Tpt1 = Tp + §h(]€1 + kg),

where
ki = f(tn,zn), and ko = f(t, + h,z, + hky).

Show that the method is consistent and has truncation error

Solution:

Firstly, since
1
(I)(tv Z, At) - = é(kl(t7 I’) + kQ(tv CL’))

= %(f(t, z)+ f(t+ Atz + Atf(t,z)))
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it holds that ]
O(t,2,0) = S(f(t) + f(t,2)) = f(t,2),
which means it’s consistent.

The truncation error for this one-step method is given by

1

T(1) = eliltin) = 2(60)] = 5 (7t w(t) + F(t+ by x{te) + b)),

where we use the shorthand ky = ky (¢, z(tx)).
Using a Taylor expansion, we have that
f(te + hyx(ty) + hky) = f(te, x(tr)) + hfi(te, 2(ty)) + hky fo(te, (ty))
b S il 2 (16)) + DR foltis 2(04)) + 512K et () + O((A0)°),
where f; and f, means the partial derivative with respect to ¢ and x of f, respectively.

We will also use the Taylor expansion

=" | oan),

f(t,a(t)) = ftn, x(t) + Df (t, (t))(t — t) + D f(ty, ()
as well as the fact that D f (¢, z(tx)) := fi(te, x(tr)) + f(tr, z(tr)) fo(tr, (t)), and

D2f<tk7x(tk)) = D(ft + ffac)

Put everything together (and using the fundamental theorem of calculus to write 7}, as an integral),
we have

1380 = 2o ([ 5 0) = 00 + F+ st + )t

1 (t — tg)?

= Al (/t " F (b 2(t) £ Dt e (b))t — t) + D f(t, 2(ty)

k

- %f(tk, z(ty)) — %(f(tk, z(tr)) + hfe(te, (tr)) + hkyfo(te, 2(th))
+%h2fﬁ(tk, o(ty)) + h2ky fon (tr, o(te)) + %hgkffm(tk, x(ty)) + O((At)3))dt)
— LA+ 2f Fu+ I )l + OL(AE)

(AL (fue + 2f fro + 2 fau) + %(At)2(ftfx + ffi)} |t T O(AL)?).

1
12
Problem 7.3 Roundoff Error Effects

In practical situations, computers always round off real numbers. In numerical methods rounding
erros become important when the step size At is comparable with the precision of the computa-
tions. Thus, if taking rounding error into consideration, the Explicit Euler method will become
the following perturbed scheme:

2= ah 4 ALf(t, 2) + (AP + o,
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where p* and p* represent the errors in f and in the assembling, respectively. Assume that
|pk| < pand |p*| < pforall k =0,1,2,... and f € CL. Let e := z(¢;) — 2*, and try to prove
that
k+1 k 1 2
e < (L + AtC)[e?| + Atp+p+  sup  [Df(E)[5(AL)7,
E€tr tht] 2

and hence
CcT

cT 1
k| < JCT| 0] 4 1€ pe L s D CT At
| < eCT)el + ot oAz 20561(1)%]‘ f()l ;
where C'is the Lipschitz constant for f, and D f denotes the differentiation to f where f (¢, z(t))
is regarded as a function with single parameter ¢.

Introduce

cT

pe 1 crT
At) = — D At
o(At) OAtJrZng%pT]\ f(Q)e™ At,

when does ¢ attain its minimum, and therefore what suggestion do you have for the minimal step
size At? HINT: Use the the arithmetic mean—geometric mean inequality to find a bound for ¢.

Solution: Since
" = ok 4 Atf(t, 2F) 4+ (A" + pF

and

E(thsr) = o(t) + / " p (),

ti
taking the difference between these two equations gives

2= (ty) = xk_x(tk)+At(f(tkaxk>_f(tk7x(tk)))+Atuk+/)k_/tkH f@t ()= f(t, (L)) dt.

ty

Using the Lipschitz condition on f, we reach

tkt1
[P < (14 AtC)|ef| + Atp+ p + / ft,z(t)) — f(tk,x(tk))dt‘.

173

Applying the mean value theorem, we find that for each ¢ € [ty, tx.1] there exists some £(t) €
[tx, t] such that f (¢, x(t)) — f(tx, x(tx)) = Df(£(t))(t — tx). Thus, we reach the bound

1
" < (1 4+ AtO)|e¥| + Atu+p+  sup |Df(§)|§(At)2.

E€ti,trt1]

Applying this bound iteratively, we have that

1+ AtC)r —
6 < (14 MO + (At + p+ S(A1)? sup (DF(E)) )
Recall that 1 + x < e* for all x € R. Applying this here gives the bound
oCT
|e*] < e“T1e%] + (uAt + p+ = (At) sup |Df(§)])
€€[0,7) CAt

cT cT
CT| .0 pe pe 1 oCT
0 — D At
e |e|+C+Ct+C£I[épT|f()I
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This is an upper bound for truncation error. We would like to minimise this error bound. Consider
only the terms that depend on At (this quantity is denoted by ¢ in the question). By the arithmetic
mean—geometric mean inequality, we have that

cT

pe 1 or 1
At) = + — sup |D e“ T At > 2, | —=pe2¢T sup |D
O(AY) = =g 20&[0%]\ f(6)] Yorld 56[0%]| f(6)]

p sup |Df(§)]

£€[0,7]

_ ﬁéCT\/

In the above inequality, equality holds if and only if the two quantities are equal. Thus, the

minimum of ¢(At) is attained when At = \/ 2p sup |Df(€)|”", which is the minimal suggested
£el0.7]

step size for this algorithm.
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