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Finite difference methods

® Finite difference methods: basic numerical solution methods for partial
differential equations.

® Obtained by replacing the derivatives in the equation by the appropriate
numerical differentiation formulas.

® Numerical scheme: accurately approximate the true solution.

® Basic finite difference schemes for the heat and the wave equations.
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Finite difference methods

® Numerical algorithms for the heat equation
Finite difference approximations
® Consider the heat equation
ou_ o
ot ox2
u(t,0) = u(t,1) =0, t>0,
U(O7X) = UO(X)7 X € [07 1]7

=0, xe[0,1],t>0,

v > 0: thermal conductivity.
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Finite difference methods

® Numerical approximation to the solution u:

e Rectangular mesh consisting of points (x, x;) with
O=th<th<t<... and O0=xy<x3 <...<xys+1 =1

e Uniform time step and spatial mesh sizes:

1

At =ty — ty, AX:XJ:H—XJ':N.

Numerical methods for ODEs Habib Ammari



Finite difference methods

® Numerical approximation of u at the mesh point (t, x;):
uf ~ u(te,x;) where t, = kAt, x; = jAx.
® Dirichlet boundary conditions u(t,0) = u(t,1) =0, t >0 =

ué = u,‘§,+1 =0 forall k>0.
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Finite difference methods

® Finite difference approximations for the derivatives.

® Approximation of the second order space derivative:

Pu u(ti, xj—1) — 2u(te, x5) + u(te, Xj+1) 2
o (B R o) +0((8x)?)

K K K
Uiy = 2ui + u;

Ay T Oa).
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Finite difference methods

® Approximation of the time derivative:

K+l _ ok

+ O(At) = Jit’ + O(At).

A

u(tk+1vxj) — u(tkvxj)
At

u
&(tkvxf) ~
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Finite difference methods

® Explicit scheme:

Ukt . —uk oy 2uf — 0
At 7 (Ax)?
for k>0andje{1,...,N}.
[ ]
_ At
1= (axy

® Vector whose entries are the numerical approximations to the solution
values at time tx at the interior nodes:

i = (uf,ug, o) R (Ut xa), ot %), - ulte xi) T
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Finite difference methods

® Matrix form:
LD — a0,

1-2u %
Iz 1-2u Iz
H 1-2p H

% 1-2u %
% 1-2p

® A: symmetric and tridiagonal.
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Finite difference methods

e Consistency, stability, and convergence
® General finite difference method:

FALAX({UJ‘:rnm}m*Smﬁm*,n*ingn*) = 07

m™, n™: width of the stencil of the scheme.
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Finite difference methods

e DEFINITION: Consistency and order

e Finite difference scheme: consistent with F(u) = 0 if, for any
smooth solution u(x, t), truncation error:

FAt-AX({u(tk-H‘mXj+n)}m*§m§m+,n*§n§n+) —0

as At and Ax — 0 independently.
e Scheme: of order p in time and order q in space if truncation
error: of the order of O((At)P + (Ax)?) as At and Ax — 0.
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Finite difference methods

e THEOREM:

e Explicit scheme: consistent with the heat equation, of order
one in time and two in space.

e Moreover, if
yAt 1

(*) W =5

then, explicit scheme: of order two in time and four in space.
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Finite difference methods

e PROOF:

e Taylor expansion of v(t,x) € C® evaluated at (t, x),

v(t+ At,x) — v(t,x)

At
n —v(t,x — Ax) 4 2v(t, x) — v(t,x + Ax)
! (Bx)?
ov v At 0%v v(Ax)? 9*v

ot ox2 2t XHTﬁ( )T 84(t x)
+O((At)* + (Ax)*).
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Finite difference methods

® v: solution of the heat equation = truncation error goes to zero as
At, Ax — 0 = explicit scheme: consistent.

Scheme: of order 1 in time and 2 in space.
e Suppose that (#) holds = terms in At and (Ax)? cancel out since

Pv_ v _ L0
oz~ Tatoxe T oxt

Explicit scheme: of order 2 in time and 4 in space.
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Finite difference methods

e DEFINITION: Stability

e Finite difference scheme: stable with respect to the norm || ||,
defined by

N 1
|u®|, = (ZAXU;V) ;1< r< oo,
j=1

u(k) | if there exists a positive constant C independent of At
and Ax s.t.

[, < Cu®], for all k> 0.
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Finite difference methods

e DEFINITION: Linear scheme

e Finite difference scheme: linear if scheme: linear with respect

. k+m
to Its arguments Uilh -

® Linear finite difference scheme:

s Z A0,

A: iteration matrix.
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Finite difference methods

S — pkHL(0)

Stability <

|A @, < C|[u@]|,, forall k>0 and u® e R".

® Matrix norm

M
M, = sup 1Ml
uERN | us£0 ullr

Stability
|A¥]l, < C, forall k >0.
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Finite difference methods

e Stability in the L° norm
® [*°-norm:
[u® e := sup_ |uf].
1<j<N

® Implicit scheme:

uk+1

k1 ok kL k+1 _
u; u uily + 20 i+

J J
ar 7 (Ax)?
for k>0andje{l,...,N}.
e Implicit scheme well defined: uf
inverting the definite positive matrix
1+2p — i
- 1+2u —p
- 1+2p  —p

1) can be obtained from u® by

- 1+2u —p
— 14 2p



Finite difference methods

e THEOREM:

(i) Explicit scheme: stable with respect to the L> norm iff the
Courant-Friedrichs-Lewy (CFL) condition holds:

2yAt < (Ax)?.

(ii) Implicit scheme: unconditionally stable with respect to the L>
norm.
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Finite difference methods

e Stability in the L? norm
® Consider the heat equation with the periodic boundary conditions

u(t,x+1) =u(t,x) forall xe[0,1], t>0.

e For any u¥ = (uf)j=o,...,n, We associate a piecewise constant function

u®(x), periodic with period 1, defined on [0, 1] by

(k) ok
u'(x) = u; 1‘0|’><j7%<x<><J+7

“)Ax, j=0,...,N, x7%:0,XN+H%:1.
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Finite difference methods

® Fourier series of u®)

k) X) Z A(k) 27rm><

n€Z

1
ﬁf,k) ::/ u(k)(x)e_%”"x dx.
0

® Plancherel’'s formula =

1
/ |U(k)(X)‘2 dXZZ|0r(1k)|2
J0

n€Z

® Property of Fourier series of periodic functions:

V(k)()() = u(k)(x + AX) = \7’(1’() _ ﬁ,(,k)eZ,rinAx.
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Finite difference methods

® Explicit scheme:

uk+1(x) — uk(x) —uk(x — Ax) + 2uk(x) — uk(x + Ax)
At T (Ax)? =0

® Fourier transform =

A(k+1) _ YAt | orinax 2minAxy \ ~(k)
Oy —(1—(AX)2(e +2—e ) ) ay.
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Finite difference methods

® Equivalently,
6V = a(ma?) = a(n)*1a%(n)
with

a(n):=1- (AA)Z (sin(mnAx))>.

e = 0 bounded as k — +oc iff the amplification factor a(n) satisfies

|a(n)| <1 forall n € Z.

Plancherel’'s formula =

1
69 = [ 1007 o= ST 180 < 3 107 =
J0

nEZ neZ

= Conditional stability with respect to the L norm.
CFL condition:

2yAt
Ax)
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Finite difference methods

Implicit scheme:

u Y (x) — u*(x) n — U (x = Ax) + 20K (x) — UK (x + Ax)
At 7 (Ax)?

=0.

® Fourier transform =

6D = Bn)alt) = B(n)* 1 a(n),

B(n) = <1+ (‘ZA) (sin(rnAx)) )1.

Plancherel’s formula = Unconditional stability with respect to the L[>
norm.
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Finite difference methods

e THEOREM:
(i) Explicit scheme: stable with respect to the L? norm iff the CFL
condition
2yAt < (Ax)?
holds.
(i) Implicit scheme: unconditionally stable with respect to the L2
norm.
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Finite difference methods

e Convergence
e THEOREM: Lax theorem

e u: smooth solution of the heat equation.

e Suppose that the finite difference scheme for computing the
numerical solution u¥: linear, consistent, and stable with
respect to the norm || ||,.

k KT,

K. .k K) _ (ak
o Let ¢ := uf — u(ty,x;) and el = (ef, ek, ... ek

0_
e Assume that uf = up(x;).
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Finite difference methods

® Then,

lim (sup [[e®],) =0 forall T>o0.
At,Ax—0 0w<T

® Moreover, if the scheme: of order p in time and ¢ in space, then there
exists a constant Ct > 0 s.t.

sup ]|, < Cr (A1) + (Ax)7).

t<T
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Finite difference methods

e PROOF:

o ulktD) = Aulh); A: iteration matrix; Gf = u(ty, x;).

e Consistency = there exists €(¥) s.t.

a ) = A+ (At)e®  and lim 9], =0,
At,Ax—50

uniformly in k.
e Scheme: of order p in time and q in space =

1], < C((A)P + (Bx)7).
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Finite difference methods

e = AelM) — At
® By induction,

k
e = Ake® _ At > Ak U=1),
=1

Stability =
1A%l < ¢

for some positive constant C’.

° =

€M, < (At)KCC'((At)P + (Ax)?) < TCC'((AL) + (Ax)).
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Finite difference methods

® Numerical algorithms for the one-way wave equation
ou ou
==,
ot Ox
u(0, x) = wo(x),

® ¢ > 0: wave speed.

® Solution given by u(t, x) = uo(x + ct).

Identity: , ,
o°u 28 u

o2 = © ox
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Finite difference methods
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Finite difference methods

® There are three finite difference approximations of the solution:

K
Uit .
Ehs S upwind scheme,
Ax
UKk o
J J LIJ Uj—l .
T Ar CT downwind scheme,
X
Uk
j+1 1
ghs 1 centered scheme.
2Ax
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Finite difference methods

® Taylor expansions of a smooth solution u:

u(t+ At,x) —u(t,x) _Ou At 9%u
) = Pe )+ BT e + 01,
u(t,x+ Ax) —u(t,x) Ou Ax 0%u 2
) = e+ 520 40 + o)),
u(t,x+ Ax) —u(t,x — Ax) _Ou

= = S2(t:%) + O((Ax)),

® = truncation error in the upwind scheme is O(At + Ax).

® Analogously, the truncation error in the downwind scheme is
O(At 4 Ax), while the one in the centered is O(At + (Ax)?).

o |f
_ Ax

At
then the truncation error in the upwind scheme is O((At)? + (Ax)?).
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Finite difference methods

® Stability analysis: one can easily see that the upwind scheme is stable with
respect to the L? norm provided that the following CFL condition holds:

CAt<1
Ax —

® Downwind and the centered schemes are unstable.
® One way to fix the stability issue for the centered scheme is to add
diffusion. One replaces the centered scheme with

K K
ujH—uJ- :Cufﬂ—uk 40 ufiy — 2uf + uf
At 2Ax (Ax)? ’

where 6 > 0, or equivalently, with

ujk+17(2 ,+1+(1 /\)u + 2 Sui 1) :Cujkﬂ_ujk_l
At 2Ax

Here, A is defined by
2At

(Bx)?
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Finite difference methods
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Finite difference methods

® Numerical algorithms for the wave equation

® Consider the wave equation

Pu_ 2o

oz = ¢ ax?
u(t,x+1)=u(t,x), 0<x<1l, t>0,

0<x<l1, t>0,

u(0,x) = w(x), 0<x<1,

1o}
8—:(0,x) =u(x), 0<x<I,

¢ > 0: wave speed.

® Suppose

(%) /01 u(x) dx = 0.
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Finite difference methods

® Similar to the numerical schemes for the heat equation, we can use
differentiation formulas to arrive at a numerical scheme for the wave
equation.

® Since both time and space derivatives are of second order, we use
centered differences to approximate them:

Qu u(ti—1,%) — 2u(te, xj) + u(tes, Xj) 2
——(tk, %) = : : o((At

T (1.39) e +o((ae)
ult — 2uf‘ + uf‘“

(ary

+ O((At)).

® Then up to an error of order O((Ax)? + (At)?) the solution to the wave
equation can be approximated by the following explicit finite difference
scheme: . , o . } k
uiTt = 2uf + 2 Uiy — 2ui + Uiy

Aty - (Bx)?

e One can prove that the scheme is stable in the L? norm provided that
c(At)/(Ax) < 1.
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Finite difference methods

® Another standard finite difference scheme for solving the wave equation:
O-centered scheme

+1 K k—1 k+1 k+1 k+1
—2u +u Loz +2u7 — Uy
(At)? (Ax)?
k K k k—1
—u +2u —u: —_ 1 +2U —u 4
1-20 2 j—1 J j+1 0 2 J Jt+l
B L (B2 >
0<0h<1/2
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Finite difference methods

If & = 0, then the scheme: explicit;
® Scheme: implicit if 6 # 0.

Initial conditions expressed by

10 x;
u; — u; j+1/2

u) = uo(x;) and l__J :/ ui(x) dx;
Xj—1/2

® = (xx): satisfied by the numerical solution.
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Finite difference methods

e THEOREM:

o If 1/4 < < 1/2, then the -centered scheme: unconditionally
stable with respect to the L? norm.
e If 0 < < 1/4, scheme: stable provided that the CFL

condition
cAt 1

Ax S V1-40
holds and unstable if cAt/Ax > 1/4/1 — 46.
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