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proceeding to the ones you expect to be more difficult. Do not spend too much time on
one question but try to solve as many questions as possible.

� Take a new sheet for each question and write your name on every sheet.

� All results have to be explained/argued by indicating intermediate steps in the respective
calculations. You can use known formulas from the lecture without derivation.

� Simplify your results as far as possible.

� Some of the subquestions can be solved independently of each other.
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Question 1 (10 points)

Assume we have n = 10 observations given by D = {(Y1,x1, v1), . . . , (Yn,xn, vn)}. Assume that
Yi are independent and Poisson distributed for i = 1, . . . , n with

Yi ∼ Poisson (λ(xi)vi) ,

for given volumes vi = 1 and with (unknown) regression function x 7→ λ(x) > 0.

(a) Assume that the features xi are (continuous) real-valued for all i = 1, . . . , n. We have
collected the following data D:

i 1 2 3 4 5 6 7 8 9 10
Yi 10 10 10 20 20 20 10 10 10 10
xi 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
vi 1 1 1 1 1 1 1 1 1 1

(i) How many (non-trivial) splits will the standardized binary regression tree perform if
we use the Poisson deviance statistics as loss function? How big is the final Poisson
deviance statistics loss? Give arguments for your answers.

(ii) Which is the first split that the standardized binary regression tree will make under
the Poisson deviance statistics loss function? Give the right guess!

(b) Assume that the features xi are (unordered) categorical for all i = 1, . . . , n. We have
collected the following explicit data D:

i 1 2 3 4 5 6 7 8 9 10
Yi 10 10 10 20 20 20 10 10 10 10
xi BE VS TG GR AI SG TI UR SZ LU
vi 1 1 1 1 1 1 1 1 1 1

(i) How many (non-trivial) splits will the standardized binary regression tree perform if
we use the Poisson deviance statistics as loss function? How big is the final Poisson
deviance statistics loss? Give arguments for your answers.

(ii) Which is the first split that the standardized binary regression tree will make under
the Poisson deviance statistics loss function?

(c) Prove that every standardized binary split considered in items (a) and (b) strictly decreases
the Poisson deviance statistics loss.

(d) Comparing the results of items (a) and (b) we obtain the following in-sample losses on D
and out-of-sample losses on test data T .

in-sample loss out-of-sample loss
homogeneous model λ(·) ≡ constant 14.9630 19.9202
continuous features and 1 split 10.1939 9.4271
categorical features and 1 split 0.0000 15.4518

Discuss the two error measures (in-sample loss and out-of-sample loss) and make a model
choice (with justification).



Solution 1

(a) (i) We see that the three observations (x1,x2,x3) = (0.1, 0.2, 0.3) have the same re-
sponse (Yi = 10). Likewise, the three observations (x4,x5,x6) = (0.4, 0.5, 0.6) have
the same response (Yi = 20). Finally, also the four observations (x7,x8,x9,x10) =

(0.7, 0.8, 0.9, 1) have the same response (Yi = 10). This implies that on each of the
three blocks of observations mentioned above we can get a perfect fit to the data. We
conclude that the standardized binary regression tree will perform two (non-trivial)
splits (one between 0.3 and 0.4, and the other between 0.6 and 0.7) and that the final
Poisson deviance statistics loss is equal to 0.

(ii) If we first split the data between 0.6 and 0.7, then the Poisson deviance statistics loss
is already equal to 0 for the four data points (x7,x8,x9,x10). Moreover, the regression
tree estimator for the observations (x1, . . . ,x6) is equal to (3 ·10+3 ·20)/6 = 15, i.e. it
is exactly the average of the two responses 10 and 20 observed for the observations
(x1, . . . ,x6). Therefore, we guess that the first split will be done between 0.6 and 0.7.
We remark that this is just a heuristic guess. One would need to calculate the Poisson
deviance statistics loss in order to mathematically determine the first split.

(b) (i) The seven observations (x1,x2,x3,x7,x8,x9,x10) = (BE,VS,TG,TI,UR, SZ,LU)

have the same response (Yi = 10). Likewise, the three observations (x4,x5,x6) =

(GR,AI, SG) have the same response (Yi = 20). This implies that on each of these
two blocks of observations we can get a perfect fit to the data. We conclude that
the standardized binary regression tree will perform only one (non-trivial) split (one
leaf will contain the observations {x1,x2,x3,x7,x8,x9,x10} and the other leaf the
observations {x4,x5,x6}) and that the final Poisson deviance statistics loss is equal
to 0.

(ii) As we will only have one (non-trivial) split in this case, it is automatically clear what
the first split will be, and we do not need to make a guess.

(c) Suppose that the considered split divides the leaf Xt into the two parts Xt0 and Xt1. Let
D∗t be the deviance statistics of the leaf Xt (where the split will happen). Moreover, let
D∗t0 and D∗t1 be the deviance statistics after the split on the two resulting leaves Xt0 and
Xt1. Then, we have

D∗t = min
λ

∑
i∈Xt

2Yi

[
λvi
Yi
− 1− log

(
λvi
Yi

)]
≥ min

λ

∑
i∈Xt0

2Yi

[
λvi
Yi
− 1− log

(
λvi
Yi

)]
+ min

λ

∑
i∈Xt1

2Yi

[
λvi
Yi
− 1− log

(
λvi
Yi

)]
(1)

= D∗t0 +D∗t1.

As the MLE in the Poisson case is unique and the estimates of λ change in all the (non-
trivial) splits considered in items (a) and (b), in the inequality in equation (1) we have in
fact a “>” instead of a “≥”.

(d) The in-sample loss is the loss obtained on the training sample that is used to fit the
model. Minimizing this error can lead to overfitting, especially if our considered model is
too flexible. Therefore, the quality of the model should be evaluated on a test data set
(out-of-sample loss) that has not been used for model estimation.

In our case we prefer the continuous feature model (with 1 split), because the corresponding
model has the smallest out-of-sample loss (9.4271).



Question 2 (10 points)

Assume we have n observations given by

D = {Y1, . . . , Yn} .

Assume that Yi are independent and exponentially distributed for i = 1, . . . , n with density

fY (y) = θ exp {−θy} 1{y≥0},

for a given (but unknown) parameter θ > 0.

(a) Calculate the maximum likelihood estimator θ̂MLE for θ, given data D, under the above
model assumptions.

(b) Define a Bayesian model for the estimation of the unknown parameter θ using a non-
degenerate prior distribution.
Hint: The gamma distribution has density supported on R+ and given by

π(θ) =
cγ

Γ(γ)
θγ−1 exp {−cθ} 1{θ>0}, (2)

with given parameters γ, c > 0. The corresponding mean and variance are given by γ/c
and γ/c2, respectively.

(c) Calculate the posterior estimator θ̂post for θ, given data D, under the Bayesian model
assumptions using π given in (2) as prior density.

(d) Give a credibility theory interpretation of the posterior estimator θ̂post derived in item
(c). Which is the parameter driving prior uncertainty if we assume that the prior mean
θ0 = γ/c is a given constant? Give an argument for your answer.

(e) Derive the (conditional) mean square error of prediction of θ̂post derived in item (c). What
happens with this error if n→∞? Give an argument for your answer.



Solution 2

(a) Assuming that Yi ≥ 0 for all i = 1, . . . , n (which holds P-a.s.), the likelihood function
LD(θ) of the data D is given by

LD(θ) =

n∏
i=1

θ exp{−θYi}.

Thus, for the log-likelihood we get

lD(θ)
def
= log(LD(θ)) =

n∑
i=1

log(θ)− θYi.

In order to determine the maximum likelihood estimator θ̂MLE for θ, we take the derivative
of lD(θ) with respect to θ and set it equal to 0. We have

∂lD(θ)

∂θ
=

n∑
i=1

1

θ
− Yi,

which is equal to 0 if and only if

n
1

θ
=

n∑
i=1

Yi ⇐⇒ θ =
1

1
n

∑n
i=1 Yi

.

For the second derivative of lD(θ) we get

∂2lD(θ)

∂θ2
= − n

θ2
< 0.

We conclude that the log-likelihood function is concave in θ, and that the maximum like-
lihood estimator θ̂MLE is given by

θ̂MLE =
1

1
n

∑n
i=1 Yi

.

(b) In a Bayesian model we assume that the parameter θ is a random variable whose density
π is supported on (0,∞). Additionally, we assume that

Yi | θ ∼ exponential(θ)

for all i = 1, . . . , n and that, conditionally on θ, the random variables Y1, . . . , Yn are
independent.

Using the definition of the conditional density (Bayes’ theorem) and our assumptions, the
joint distribution of the data Y = (Y1, . . . , Yn)′ and the parameter θ is given by the density

f(Y , θ) = f(Y |θ)π(θ) =

(
n∏
i=1

f(Yi|θ)

)
π(θ),

where f(Y |θ) denotes the conditional density of Y given θ and, analogously, f(Yi|θ) denotes
the conditional density of Yi given θ. The posterior distribution of θ is then the distribution
of θ given the data Y , and is given by the density

f(θ|Y ) =
f(Y , θ)

f(Y )
∝ f(Y |θ)π(θ).



(c) In order to identify the posterior distribution, we select for the prior distribution of θ the
gamma distribution given in the hint in item (b). In that case, again assuming that Yi ≥ 0

for all i = 1, . . . , n, the posterior distribution of the parameter θ given the data Y is given
by

f(θ|Y ) ∝

(
n∏
i=1

θ exp{−θYi}

)
cγ

Γ(γ)
θγ−1 exp{−cθ}

∝ θγ+n−1 exp

{
−

(
c+

n∑
i=1

Yi

)
θ

}
,

which is the unnormalized density of the gamma distribution with parameters

γ̂post = γ + n and ĉpost = c+
n∑
i=1

Yi.

Since we have θ̂post = E[θ|Y ], using again the hint from item (b), we obtain

θ̂post =
γ̂post

ĉpost =
γ + n

c+
∑n

i=1 Yi
.

(d) We can write

θ̂post =
γ + n

c+
∑n

i=1 Yi
=
γ

c

c

c+
∑n

i=1 Yi
+

n∑n
i=1 Yi

∑n
i=1 Yi

c+
∑n

i=1 Yi
= (1− w) θ0 + w θ̂MLE,

where θ0 is the mean of the prior distribution π, θ̂MLE is the MLE from item (a) and w is
the credibility weight given by

w =

∑n
i=1 Yi

c+
∑n

i=1 Yi
∈ (0, 1).

If we assume that the prior mean θ0 = γ/c is a given constant, then, using the hint in item
(b), we get

Var(θ) =
γ

c2
=
θ0
c
.

In particular, we see that the parameter c drives the prior uncertainty (for fixed prior mean
θ0 = γ/c).

(e) We have that

MSE
(
θ̂post

∣∣∣Y ) = E
[(
θ̂post − θ

)2∣∣∣∣Y ] = E
[
(E [θ|Y ]− θ)2

∣∣Y ] = Var (θ|Y ) .

Using again the hint from item (b), we obtain

MSE
(
θ̂post

∣∣∣Y ) =
γ̂post

(ĉpost)2
=

γ + n

(c+
∑n

i=1 Yi)
2 =

γ + n

c+
∑n

i=1 Yi

1

c+
∑n

i=1 Yi

=
γ
n + 1

c
n + 1

n

∑n
i=1 Yi

1

c+
∑n

i=1 Yi
.

Due to the law of large numbers, we have

1

n

n∑
i=1

Yi −→ µ, for some µ ∈ (0,∞), and
n∑
i=1

Yi →∞, as n→∞.

We can conclude that MSE
(
θ̂post

∣∣∣Y )→ 0, as n→∞.



Question 3 (10 points)

Assume we have n claims given by

D = {(Y1,x1), . . . , (Yn,xn)} .

Assume that xi ∈ X = R, and that Yi are independent and log-normally distributed for i =

1, . . . , n with density supported in R+ and given by

Yi ∼ f(y|xi) =
1√
2π

1

y
exp

{
−1

2
(log y − µ(xi))

2

}
, for y ≥ 0,

for a given (but unknown) regression function µ : X → R.

(a) Calculate the deviance statistics for this problem using a general regression function µ :

X → R.

(b) Set up a single hidden layer neural network with 10 hidden neurons for this regression
problem, using the hyperbolic tangent activation function given by φ(x) = (ex−e−x)/(ex+

e−x) for x ∈ R. Calculate the number of parameters of this model.

(c) Calculate one step of the gradient descent optimization algorithm explicitly for the deviance
statistics loss function derived in item (a) and the single hidden layer neural network
defined in item (b). Why is the hyperbolic tangent an attractive activation function in the
application of the gradient descent algorithm?

(d) Choose the neural network defined in item (b) but replace the hyperbolic tangent activation
function by the step function activation φ(x) = 1{x≥0} for x ∈ R.

(i) Can the number of parameters of this regression function be reduced compared to
the one in item (b) without affecting the regression function itself? If yes, how many
parameters are sufficient? Justify your answer.

(ii) How many different output values µ(x) can this regression model at most produce?
Justify your answer.

(e) Assume that the feature space X is categorical having 11 different labels, i.e. the feature
space is given by X = {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11}. We use dummy coding
for these categorical feature components, and then we set up a single hidden layer neural
network having one hidden neuron and hyperbolic tangent activation function.

(i) Calculate the number of parameters that this regression model receives.

(ii) How many different output values µ(x) can this regression model at most produce?
Justify your answer.



Solution 3

(a) Assuming that Yi ≥ 0 for all i = 1, . . . , n (which holds P-a.s.), the likelihood function
LD(µ(·)) of the data D is given by

LD(µ(·)) =
n∏
i=1

1√
2π

1

Yi
exp

{
−1

2
(log(Yi)− µ(xi))

2

}
.

Thus, for the log-likelihood we get

lD(µ(·)) = log(LD(µ(·))) =

n∑
i=1

− log
(√

2π
)
− log(Yi)−

1

2
(log(Yi)− µ(xi))

2.

In the saturated model we have one parameter µi per observation Yi. That is, we have to
maximize

g(µi)
def
= − log

(√
2π
)
− log(Yi)−

1

2
(log(Yi)− µi)2

with respect to µi, for all i = 1, . . . , n. If we take the derivative with respect to µi, we get

∂g(µi)

∂µi
= log(Yi)− µi,

for all i = 1, . . . , n. This is equal to 0 if and only if

µ̂i = µ̂i(Yi) = log(Yi), (3)

for all i = 1, . . . , n. For the second derivative of g(µi) with respect to µi we get

∂2g(µi)

∂µ2i
= −1 < 0,

for all i = 1, . . . , n. That is, in the saturated model we have the parameter µ̂ = µ̂(Y ) =

(µ̂1(Y1), . . . , µ̂n(Yn)) with µ̂i(Yi) given as in (3), for all i = 1, . . . , n. For the log-likelihood
of the saturated model we then have

lD(µ̂) =
n∑
i=1

− log
(√

2π
)
− log(Yi)−

1

2
(log(Yi)− log(Yi))

2

=
n∑
i=1

− log
(√

2π
)
− log(Yi).

Finally, the (scaled) deviance statistics is given by

D∗(Y , µ(·)) = 2(lD(µ̂)− lD(µ(·)))

= 2
n∑
i=1

− log
(√

2π
)
− log(Yi) + log

(√
2π
)

+ log(Yi) +
1

2
(log(Yi)− µ(xi))

2

=
n∑
i=1

(log(Yi)− µ(xi))
2.

(b) We choose a single hidden layer neural network with 10 hidden neurons. As our feature
space is X = R, we have only one neuron in the input layer. Using the hyperbolic tangent
activation function φ given on the exam sheet, we have activations, for all j = 1, . . . , 10,

zj(x) = φ(wj,0 + wj,1x),



with unknown parameters wj,0, wj,1 ∈ R, for the 10 neurons in the hidden layer. Since the
codomain of µ(·) is the real line, we define a linear regression approach as follows

µ(x) = β0 +

10∑
j=1

βjzj(x),

with unknown parameters β0, β1, . . . , β10 ∈ R. Overall, we have

(1 + 1)10 + (10 + 1) = 31

parameters in the model.

(c) We note that for the derivative of the hyperbolic tangent activation function φ we have

∂φ(x)

∂x
=

∂

∂x

ex − e−x

ex + e−x
=

(ex + e−x)2 − (ex − e−x)2

(ex + e−x)2
= 1− φ2(x). (4)

We write
θ = (w1,0, w1,1, . . . , w10,0, w10,1, β0, β1, . . . , β10) ∈ R31

for the vector of the unknown model parameters. Thus, the regression function µθ(·)
depends on θ. In the gradient descent optimization algorithm the goal is to decrease a
given loss function by iteratively updating the model parameters. In our case we would
like to decrease the deviance statistics

D∗(Y , µθ(·)) =

n∑
i=1

(log(Yi)− µθ(xi))
2.

To this end, for a given θ, we move in the direction of the maximal local decrease of the
deviance statistics, i.e. in the direction of the negative gradient ∇θD

∗(Y , µθ(·)) of the
deviance statistics. We calculate

∇θD
∗(Y , µθ(·)) =

∂D∗(Y , µθ(·))
∂θ

= −2

n∑
i=1

(log(Yi)− µθ(xi))
∂µθ(xi)

∂θ
,

where we have

∂µθ(xi)

∂wj,0
= βj(1− z2j (xi)),

∂µθ(xi)

∂wj,1
= βjxi(1− z2j (xi)),

∂µθ(xi)

∂β0
= 1,

∂µθ(xi)

∂βj
= zj(xi),

for all i = 1, . . . , n and j = 1, . . . , 10. In one single step of the gradient descent optimization
algorithm we have the update

θ −→ θ − ρ∇θD
∗(Y , µθ(·)),

where ρ > 0 is the so-called learning rate. The hyperbolic tangent activation function is an
attractive activation function in the application of the gradient descent algorithm because
of its property (4). This property allows to efficiently calculate gradients, as it only requires
simple subtraction and multiplication and as there is no need for re-evaluating some other
function. Moreover, with the hyperbolic tangent activation function the activations in the
neurons in the hidden layers lie in [−1, 1]. This can considerably speed up training, as
there is no risk of the activations to explode. This holds especially true for deep neural
networks.



(d) (i) With the step function activation φ(x) = 1{x≥0}, for x ∈ R, the regression function
µ(·) looks as follows

µ(x) = β0 +
10∑
j=1

βjφ(wj,0 + wj,1x) = β0 +
10∑
j=1

βj1{wj,0+wj,1x≥0}.

Note that wlog we can assume that wj,1 > 0, for all j = 1, . . . , 10: If wk,1 < 0 for
some k ∈ {1, . . . , 10}, then we can rewrite µ(·) as follows

µ(x) = β0 +

10∑
j=1
j 6=k

βj1{wj,0+wj,1x≥0} + βk1{wk,0+wk,1x≥0}

= (β0 + βk) +
10∑
j=1
j 6=k

βj1{wj,0+wj,1x≥0} − βk1{−wk,0−wk,1x≥0}.

If wk,1 = 0 for some k ∈ {1, . . . , 10}, then the regression function does not depend on
the value of this particular neuron, i.e. the considered neuron could be removed from
the model. Thus, we assume that wj,1 > 0, for all j = 1, . . . , 10. Then, the regression
function µ(·) can be rewritten as

µ(x) = β0 +
10∑
j=1

βj1{wj,0+wj,1x≥0} = β0 +
10∑
j=1

βj1{
x≥−

wj,0
wj,1

} = β0 +
10∑
j=1

βj1{x≥w̃j},

where w̃j = −wj,0

wj,1
, for all j = 1, . . . , 10. In particular, all tuples (wj,0, wj,1) can be

replaced by one parameter w̃j . This corrresponds to a reduction of one parameter for
all j = 1, . . . , 10, leading to a new total of 31− 10 = 21 parameters.

(ii) As the parameters w̃j can be ordered as w̃(1) ≤ w̃(2) ≤ · · · ≤ w̃(10), the regression func-
tion µ(·) is actually a step function which is constant in [−∞, w̃(1)], in [w̃(j), w̃(j+1)],
for all j = 1, . . . , 9, and in [w̃(10),∞]. Hence, the regression function µ(·) can produce
at most 11 different values (namely in the case, where the parameters w̃1, . . . , w̃10 are
all different from each other).

(e) (i) If we use dummy coding for a categorical variable having 11 different labels, we need
11− 1 = 10 variables. For a given feature a ∈ X we define

ul(a) =

{
1, if a = al,
0, else,

for all l = 1, . . . , 10. The label a11 then corresponds to the vector

(u1(a11), . . . , u10(a11)) = (0, . . . , 0)

of all zeroes, i.e. label a11 is chosen as reference label. The regression function µ(·) is
given by

µ(a) = β0 + β1φ

(
w1,0 +

10∑
l=1

w1,l ul(a)

)
,

where φ(·) is the hyperbolic tangent activation function. We see that the regression
function µ(·) depends on 13 parameters (β0, β1, w1,0, w1,1, . . . , w1,10).

(ii) For a given feature a ∈ X , either all the ul(a) are 0 or exactly one of them is equal to
1. This leads to at most 11 different values inside the hyperbolic tangent activation
function, which, in turn, gives rise to at most 11 different values of the regression
function µ(·).



Question 4 (10 points)

Assume we have n independent and identically distributed claims count observations given by
the data

D = {(N1,x1), . . . , (Nn,xn)} .

(a) What is the advantage of a log-linear regression function structure in terms of model
interpretation of the coefficients considered? Give a short proof of your statement for the
following regression function

log λ(x) = β0 + β1x1 + . . .+ βdxd. (5)

(b) You have the feature component age as a continuous variable in the regression function
together with other continuous variables and categorical factors:

log λ(x) = β0 + β1age + β2x2 + . . .+ βdxd.

You expected the variable age to be highly significant, but it is not. What could be the
problem and how can you solve it? Give 2 possible solutions.

(c) One of your explanatory variables (feature component x1) shows the following problem.
The variable is significant in a model without the other explanatory variables:

log λ(x) = β0 + β1x1.

But in a model with all explanatory variables given by (5) the significance of feature
component x1 vanishes while many other variables are significant. What is a possible
reason? Would you use the variable x1 for your final tariff? Give an argument for your
decision.

(d) (i) Assume you have a categorical explanatory variable with many levels (lots of them
with only few observations). How would you use this variable in your generalized
linear model? Give 2 possibilities with their advantages and disadvantages.

(ii) Assume you have several continuous explanatory variables and you do not know the
best functional form to include them in the generalized linear model. What can you
do? Give 2 possibilities with their advantages and disadvantages.



Solution 4

(a) A log-linear regression function leads to a multiplicative structure. That is, for the feature
vector x = (x1, . . . , xd) we have

λ(x) = exp{β0} exp{β1x1} · · · exp{βdxd}.

Let us now assume that the (continuous) feature value x1 gets changed by the amount ∆x.
The feature vector is then given by x̃ = (x1 + ∆x, x2, . . . , xd) and the resulting regression
function gets affected in a multiplicative way:

λ(x̃) = exp{β0} exp{β1(x1 + ∆x)} · · · exp{βdxd} = λ(x) exp{β1∆x}.

(b) It is still possible that the variable age is highly significant. The proposed model suggests
that the logarithmic response is linearly dependent on the variable age. However, if in
reality we observe that the logarithmic response is e.g. a quadratic function of the variable
age, then a simple log-linear model cannot capture this kind of dependence structure,
resulting in a variable age which is not significative. To detect the dependence structure
between the response and the variable age, one should consider a marginal plot. In case of
the aforementioned quadratic dependence one can replace the variable age by the variable
age2.

On a completely different note, the effect of the variable age on the response could be
masked by a correlated feature, leading to collinearity problems. See also item (c) below.

(c) A possible reason for this phenomenon is collinearity, i.e. there could be another feature
component (e.g. feature component x2), which is correlated with feature component x1.
In this case it can happen that the feature component x2 is significative and x1 is not
significative anymore, as its effect on the response variable is already explained by x2. There
are arguments for keeping the variable x1 in the model as well as there are arguments for
removing the variable x1 from the model. An argument for keeping the variable x1 would
be that it is still possible that x1 is a model-relevant variable and removing it would result
in a bias. An argument for removing the variable x1 would be that a model should be as
sparse as possible in order to not overfit to the data and keep the variance of the coefficients
estimates as low as possible. As the variable x1 shows itself not to be significative in the
joint model, it is a good candidate to be removed from the model. In the end it really
depends on the variable under consideration whether to keep it in the model or remove it.

(d) (i) In order to use such an explanatory variable with many levels in a generalized linear
model, one could try to combine levels. This could be done according to the logic of
the feature, e.g. zip codes could be summarized to the various regions, areas or districts
of a city or a country. Where such an aggregation is not possible, the levels could
also be combined according to their response rates, i.e. we combine those levels where
we observe similar average responses. The advantage of such aggregation techniques
is that we do not have as many levels as before, and that we have more observations
for the remaining levels, which allows us to build a more robust model. On the other
hand, the model gets more crude, loosing additional granular information that one
could have gained with the original categorical variable if one had had enough data.
As another possibility, the variables could be directly replaced by their response rate,
transforming the categorical variable into a continuous one. Here the advantage is
that a continuous variable can directly be used as a feature and no additional data



pre-processing methods such as dummy coding are necessary. The disadvantage here
is that one gives up the true categorical nature of the feature and that one introduces
continuity where there might be none. Moreover, if one has only few observation for
a given level, then the corresponding response rate might not be very representative.
Consequently, there is a risk of introducing a bias into the model. Note that this
drawback holds also true for the aggregation of feature levels on the basis of the
response rate explained above.

(ii) One could for example study the marginal plots of the response variable against each of
the continuous explanatory variables. This allows us to get an idea of how the response
is related to the features. However, one has also to be careful as the marginal plots do
not tell us how the features interact amongst each other, leading to possibly different
functional forms in the joint model.
As a second possibility one could move from the generalized linear models towards the
generalized additive models. The advantage is that a generalized additive model setup
allows to build a more flexible model structure. However, a more flexible model needs
greater care, especially during the fitting procedure. Moreover, generalized additive
models tend to be harder to interpret than generalized linear models.
By choosing a generalized additive model we stay in the world of models with an
additive/multiplicative structure. Testing interactions could be done by regression
trees, boosting or neural networks.


