Question 1

The correct answers are:
(a) (3)
(b) (2)
(c) (2)
(d) (1)
(e) (1)
(f) (3)
(g) (2)
(h) (2)

Question 2

(a) By definition, $\mathbb{P}_{e}\left(S^{1}\right)$ is given by all probability measures Q on (Ω, \mathcal{F}) that are equivalent to P and satisfy $E_{Q}\left[S_{1}^{1}\right]=S_{0}^{1}$. Since Ω is a finite set, all such probability measures can be characterized by the probability vectors $\left(q_{1}, q_{2}, q_{3}\right) \in(0,1)^{3}$ with $q_{1}+q_{2}+q_{3}=1$ and

$$
\begin{align*}
E_{Q}\left[S_{1}^{1}\right]=S_{0}^{1} & \Longleftrightarrow E_{Q}\left[\widetilde{S}_{0}^{1} \frac{Y_{1}}{(1+r)}\right]=\widetilde{S}_{0}^{1} \quad \Longleftrightarrow \quad E_{Q}\left[Y_{1}\right]=1+r \\
& \Longleftrightarrow q_{1}(1+d)+q_{2}(1+m)+q_{3}(1+u)=1+r \\
& \Longleftrightarrow q_{1} d+q_{2} m+q_{3} u=r \\
& \Longleftrightarrow-0.2 q_{1}+0.1 q_{2}+0.3 q_{3}=0.1 . \tag{1}
\end{align*}
$$

Setting $q_{1}=\alpha$, we obtain that $q_{3}=1-\alpha-q_{2}$ from the condition $q_{1}+q_{2}+q_{3}=1$ and thus from (1) that

$$
0.1 q_{2}=0.1+0.2 \alpha-0.3\left(1-\alpha-q_{2}\right) \quad \Longleftrightarrow \quad-0.2 q_{2}=-0.2+0.5 \alpha \quad \Longleftrightarrow \quad q_{2}=1-\frac{5}{2} \alpha
$$

It thus follows that

$$
q_{3}=1-\alpha-1+\frac{5}{2} \alpha=\frac{3}{2} \alpha .
$$

Since we must have $\left(q_{1}, q_{2}, q_{3}\right) \in(0,1)^{3}$, we can only take $\alpha \in(0,2 / 5)$. So

$$
\mathbb{P}_{e}\left(S^{1}\right)=\left\{Q_{\alpha} \widehat{=}\left(\alpha, 1-\frac{5}{2} \alpha, \frac{3}{2} \alpha\right): \alpha \in\left(0, \frac{2}{5}\right)\right\} .
$$

Parametrising instead $q_{2}:=\alpha$, analogous computations lead to

$$
\mathbb{P}_{e}\left(S^{1}\right)=\left\{Q_{\alpha} \widehat{=}\left(\frac{2}{5}-\frac{2}{5} \alpha, \alpha, \frac{3}{5}-\frac{3}{5} \alpha\right): \alpha \in(0,1)\right\}
$$

and parametrising instead $q_{3}:=\alpha$ to

$$
\mathbb{P}_{e}\left(S^{1}\right)=\left\{Q_{\alpha} \widehat{=}\left(\frac{2}{3} \alpha, 1-\frac{5}{3} \alpha, \alpha\right): \alpha \in\left(0, \frac{3}{5}\right)\right\}
$$

(b) Since every martingale is a local martingale (with respect to the same probability measure and filtration), we clearly have that $\mathbb{P}_{e}\left(S^{1}\right) \subseteq \mathbb{P}_{e, l o c}\left(S^{1}\right)$. To show the opposite inclusion, we note that S^{1} is bounded P-a.s. by a fixed constant C because Ω is finite, and so is then $\left(S^{1}\right)^{\tau}$ for any \mathbb{F}-stopping time τ. Fix a $Q \in \mathbb{P}_{e, l o c}\left(S^{1}\right)$ and let $\left(\tau_{n}\right)_{n \in \mathbb{N}}$ be a localising sequence for S^{1}. Then each $\left(S^{1}\right)^{\tau_{n}}$ is a (Q, \mathbb{F})-martingale and Q-a.s. bounded by C because $Q \approx P$. So the dominated convergence theorem then gives

$$
E_{Q}\left[S_{1}^{1}\right]=E_{Q}\left[\lim _{n \rightarrow \infty} S_{1 \wedge \tau_{n}}^{1}\right]=\lim _{n \rightarrow \infty} E_{Q}\left[S_{1 \wedge \tau_{n}}^{1}\right]=\lim _{n \rightarrow \infty} S_{0 \wedge \tau_{n}}^{1}=S_{0}^{1}
$$

So S^{1} is in fact a (Q, \mathbb{F})-martingale, which means that $Q \in \mathbb{P}_{e}\left(S^{1}\right)$. This shows that $\mathbb{P}_{e, l o c}\left(S^{1}\right) \subseteq \mathbb{P}_{e}\left(S^{1}\right)$ and concludes the proof.
(c) The set of all arbitrage-free prices for $\widetilde{C}\left(\widetilde{S}_{1}^{1}\right)$ is given by

$$
M=\left\{E_{Q}\left[\frac{\widetilde{C}\left(\widetilde{S}_{1}^{1}\right)}{1+r}\right]: Q \in \mathbb{P}_{e}\left(S^{1}\right)\right\}
$$

Using the parametrisation of $P_{e}\left(S^{1}\right)$ from (a), we compute

$$
E_{Q_{\alpha}}\left[\frac{\widetilde{C}\left(\widetilde{S}_{1}^{1}\right)}{1+r}\right]=\frac{1}{1.1}\left(\alpha \times 0+\left(1-\frac{5}{2} \alpha\right) \times 0+\frac{3}{2} \alpha \times 2\right)=\frac{30}{11} \alpha
$$

So we conclude that $M=\left(0, \frac{12}{11}\right)$ because $\alpha \in\left(0, \frac{2}{5}\right)$.
(d) We have from (c) that

$$
\sup _{Q \in \mathbb{P}_{e}\left(S^{1}\right)} E_{Q}\left[\frac{1}{1+r} \widetilde{C}\left(\widetilde{S}_{1}^{1}\right)\right]=\sup _{\alpha \in(0,2 / 5)} E_{Q_{\alpha}}\left[\frac{1}{1+r} \widetilde{C}\left(\widetilde{S}_{1}^{1}\right)\right]=\sup _{\alpha \in(0,2 / 5)} \frac{30}{11} \alpha=\frac{12}{11} .
$$

The value $\frac{12}{11}$ is clearly attained for $\alpha=\frac{2}{5}$, which means that it is attained under the probability measure Q^{*} characterized by the probability vector $\left(\frac{2}{5}, 0, \frac{3}{5}\right) . Q^{*}$ is clearly not equivalent to P, but since $P[\{\omega\}]=0$ implies $Q^{*}[\{\omega\}]=0, Q^{*}$ is absolutely continuous with respect to P. (In fact, $P[\{\omega\}]=0$ is never true so that by the logical fact that an empty premise implies every conclusion, any probability measure on (Ω, \mathcal{F}) is absolutely continuous with respect to P.)
S^{1} is also a (Q^{*}, \mathbb{F})-martingale since

$$
E_{Q^{*}}\left[S_{1}^{1}\right]=\frac{1}{1.1} \times\left(\frac{2}{5} \times 8+\frac{3}{5} \times 13\right)=\frac{1}{1.1} \times \frac{16+39}{5}=\frac{1}{1.1} \times 11=10=S_{0}^{1}
$$

The Q^{*}-integrability of S^{1} is trivial since S^{1} is bounded, and adaptedness does not depend on the probability measure.

Question 3

(a) Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a sequence of simple random variables of the form

$$
X_{n}=\sum_{i=1}^{n} x_{i, n} \mathbb{1}_{A_{i, n}}
$$

for some constants $x_{1, n}, \ldots, x_{n, n} \geq 0$ and some sets $A_{1, n}, \ldots, A_{n, n} \in \mathcal{F}$ with $X_{n} \uparrow X$ pointwise as $n \rightarrow \infty$. We have seen that such a sequence exists, for instance in the solution to Exercise 2.3 of the exercise sheets. We compute

$$
\begin{align*}
E_{Q}\left[X_{n}\right] & =\sum_{i=1}^{n} x_{i, n} E_{Q}\left[\mathbb{1}_{A_{i, n}}\right]=\sum_{i=1}^{n} x_{i, n} Q\left[A_{i, n}\right]=\sum_{i=1}^{n} x_{i, n} E_{P}\left[\mathcal{D} \mathbb{1}_{A_{i, n}}\right] \\
& =E_{P}\left[\mathcal{D} \sum_{i=1}^{n} x_{i, n} \mathbb{1}_{A_{i, n}}\right]=E_{P}\left[\mathcal{D} X_{n}\right] \tag{2}
\end{align*}
$$

By the monotone convergence theorem, we immediately obtain that $E_{Q}\left[X_{n}\right] \uparrow E_{Q}[X]$ as $n \rightarrow \infty$. But since $\mathcal{D}>0$, we also clearly have that $\mathcal{D} X_{n} \uparrow \mathcal{D} X$ and another application of the monotone convergence theorem thus gives that $E_{P}\left[\mathcal{D} X_{n}\right] \uparrow E_{P}[\mathcal{D} X]$. Therefore, taking the limit on both sides of (2) gives $E_{Q}[X]=E_{P}[\mathcal{D} X]$ as desired.
(b) We compute

$$
E_{Q}[Y]=E_{P}[\mathcal{D} Y]=E_{P}\left[E_{P}\left[\mathcal{D} Y \mid \mathcal{F}_{k}\right]\right]=E_{P}\left[Y E_{P}\left[\mathcal{D} \mid \mathcal{F}_{k}\right]\right]=E_{P}\left[Z_{k} Y\right]
$$

The first equality uses (a), the second one uses the tower property of conditional expectation, the third one the \mathcal{F}_{k}-measurability and nonnegativity of Y, and the last one the definition of Z_{k}.
(c) We compute

$$
E_{P}[Y]=E_{P}\left[Z_{k} \frac{1}{Z_{k}} Y\right]=E_{Q}\left[\frac{1}{Z_{k}} Y\right]
$$

The first equality is obvious because $Z_{k}>0 P$-a.s., and the second one follows from (b) since Y / Z_{k} is nonnegative by nonnegativity of Z_{k} and Y and also \mathcal{F}_{k}-measurable as a ratio of two \mathcal{F}_{k}-measurable random variables.
(d) By the definition of conditional expectation, we need to show that

$$
E_{Q}\left[E_{Q}\left[U_{k} \mid \mathcal{F}_{j}\right] \mathbb{1}_{A}\right]=E_{Q}\left[\frac{1}{Z_{j}} E_{P}\left[Z_{k} U_{k} \mid \mathcal{F}_{j}\right] \mathbb{1}_{A}\right]
$$

for all $A \in \mathcal{F}_{j}$. We fix $A \in \mathcal{F}_{j}$ and compute

$$
\begin{aligned}
E_{Q}\left[E_{Q}\left[U_{k} \mid \mathcal{F}_{j}\right] \mathbb{1}_{A}\right] & =E_{Q}\left[U_{k} \mathbb{1}_{A}\right]=E_{P}\left[Z_{k} U_{k} \mathbb{1}_{A}\right]=E_{P}\left[E_{P}\left[Z_{k} U_{k} \mid \mathcal{F}_{j}\right] \mathbb{1}_{A}\right] \\
& =E_{Q}\left[\frac{1}{Z_{j}} E_{P}\left[Z_{k} U_{k} \mid \mathcal{F}_{j}\right] \mathbb{1}_{A}\right]
\end{aligned}
$$

The first and the third equality follow from the definition of conditional expectation, the second one from (b), and the last one uses (c) with the fact that $E_{P}\left[Z_{k} U_{k} \mid \mathcal{F}_{j}\right] \mathbb{1}_{A}$ is nonnegative by the nonnegativity of U_{k} and Z_{k} and also \mathcal{F}_{j}-measurable. Indeed, a conditional expectation with respect to \mathcal{F}_{j} is \mathcal{F}_{j}-measurable and $\mathbb{1}_{A}$ is also \mathcal{F}_{j}-measurable since $A \in \mathcal{F}_{j}$ by assumption.
(e) If N is \mathbb{F}-adapted, then $Z N$ is \mathbb{F}-adapted since the product of measurable functions is a measurable function. Conversely, if $Z N$ is \mathbb{F}-adapted, then N is \mathbb{F}-adapted for the same reason since $N=\frac{1}{Z} Z N$ and $Z>0$. The same argument shows that Z is nonnegative if and only if $Z N$ is nonnegative.

Now, N is Q-integrable if and only if $Z N$ is P-integrable because for any $k \in\{0,1, \ldots, T\}$, we have by (b) that

$$
E_{P}\left[\left|Z_{k} N_{k}\right|\right]=E_{P}\left[Z_{k}\left|N_{k}\right|\right]=E_{Q}\left[\left|N_{k}\right|\right] .
$$

Finally, $N \geq 0$ satisfies the martingale property under Q if and only if $Z N \geq 0$ satisfies the martingale property under P. Indeed, note that by (d), we have for any $k \in\{1, \ldots, T\}$ that

$$
E_{Q}\left[N_{k} \mid \mathcal{F}_{k-1}\right]=\frac{1}{Z_{k-1}} E_{P}\left[Z_{k} N_{k} \mid \mathcal{F}_{k-1}\right],
$$

which gives that

$$
\begin{aligned}
E_{Q}\left[N_{k} \mid \mathcal{F}_{k-1}\right]=N_{k-1} & \Longleftrightarrow \frac{1}{Z_{k-1}} E_{P}\left[Z_{k} N_{k} \mid \mathcal{F}_{k-1}\right]=N_{k-1} \\
& \Longleftrightarrow E_{P}\left[Z_{k} N_{k}\right]=Z_{k-1} N_{k-1}
\end{aligned}
$$

since $Z_{k-1}>0$.

Question 4

(a) Z^{σ} is clearly positive by definition for all $\sigma>-1$. Furthermore, using the fact that $N_{t}-N_{s} \sim \operatorname{Poi}(\lambda(t-s))$ and the knowledge of the moment generating function of the Poisson distribution, we compute

$$
\begin{aligned}
E\left[\left.\frac{Z_{t}^{\sigma}}{Z_{s}^{\sigma}} \right\rvert\, \mathcal{F}_{s}\right] & =E\left[e^{\left(N_{t}-N_{s}\right) \log (1+\sigma)-\lambda \sigma(t-s)} \mid \mathcal{F}_{s}\right]=e^{-\lambda \sigma(t-s)} E\left[e^{\left(N_{t}-N_{s}\right) \log (1+\sigma)}\right] \\
& =e^{-\lambda \sigma(t-s)} e^{\lambda(t-s)(1+\sigma-1)}=1
\end{aligned}
$$

Here we do not have to worry about the integrability of Z^{σ} when verifying the martingale condition since $Z^{\sigma}>0$ for $\sigma>-1$. Using the martingale property of Z^{σ}, it also follows for any $\sigma>-1$ and $t \in[0, T]$ that

$$
E_{P}\left[Z_{t}^{\sigma}\right]=E_{P}\left[Z_{0}^{\sigma}\right]=1
$$

since $N_{0}=0 P$-a.s.
(b) First, since $Q^{\sigma} \approx P$ for any $\sigma>-1$, we immediately obtain that $\left\{N_{0} \neq 0\right\}$ is a Q^{σ}-nullset because it is a P-nullset and that

$$
\left\{\omega \in \Omega:[0, T] \ni t \mapsto N_{t}(\omega) \text { is not RCLL with jumps of size } 1\right\}
$$

is a Q^{σ}-nullset because it is P-nullset. So $N_{0}=0 Q^{\sigma}$-a.s. and Q^{σ}-almost all trajectories of N are RCLL with jumps of size 1 .

Now we compute the conditional moment generating function of the increment $N_{t}-N_{s}$, $0 \leq s \leq t \leq T$, under Q^{σ}. It is given by

$$
\begin{aligned}
E_{Q^{\sigma}}\left[e^{u\left(N_{t}-N_{s}\right)} \mid \mathcal{F}_{s}\right] & =\frac{1}{Z_{s}^{\sigma}} E_{P}\left[Z_{t}^{\sigma} e^{u\left(N_{t}-N_{s}\right)} \mid \mathcal{F}_{s}\right] \\
& =e^{-N_{s} \log (1+\sigma)+\lambda \sigma s} E_{P}\left[e^{N_{t} \log (1+\sigma)-\lambda \sigma t} e^{u\left(N_{t}-N_{s}\right)} \mid \mathcal{F}_{s}\right] \\
& =e^{-\lambda \sigma(t-s)} E_{P}\left[e^{\left(N_{t}-N_{s}\right) \log (1+\sigma)} e^{u\left(N_{t}-N_{s}\right)} \mid \mathcal{F}_{s}\right] \\
& =e^{-\lambda \sigma(t-s)} E_{P}\left[e^{\left(N_{t}-N_{s}\right)(\log (1+\sigma)+u)}\right]=e^{-\lambda \sigma(t-s)} e^{\lambda(t-s)\left(e^{\log (1+\sigma)+u}-1\right)} \\
& =e^{-\lambda \sigma(t-s)} e^{\lambda(t-s)\left((1+\sigma) e^{u}-1\right)}=e^{-\lambda(1+\sigma)(t-s)\left(e^{u}-1\right)} .
\end{aligned}
$$

The first equality follows from the Bayes formula, the third from the \mathcal{F}_{s}-measurability of $e^{N_{s} \log (1+\sigma)}$, the fourth from the independence of $N_{t}-N_{s}$ of \mathcal{F}_{s} under P, and the fifth from the fact that $E_{P}\left[e^{(\log (1+\sigma)+u)\left(N_{t}-N_{s}\right)}\right]$ is the moment generating function of $\operatorname{Poi}(\lambda(t-s))$ evaluated at $\log (1+\sigma)+u$.
The last expression above is in fact the moment generating function of $\operatorname{Poi}(\lambda(1+\sigma)(t-s))$ and thus shows that $N_{t}-N_{s} \sim \operatorname{Poi}(\lambda(1+\sigma)(t-s))$. Furthermore, since the expression does not depend on $\omega \in \Omega$, we can also conclude that $e^{u\left(N_{t}-N_{s}\right)}$ is independent of \mathcal{F}_{s} under Q^{σ}, by which we can conclude the same about $N_{t}-N_{s}$ since is can be written as a continuous (therefore measurable) transformation of $e^{u\left(N_{t}-N_{s}\right)}$. We can thus conclude that N is $\left(Q^{\sigma}, \mathbb{F}\right)$-Poisson process with parameter $\lambda(1+\sigma)>0$.
(c) Since X and Y are predictable and satisfy

$$
E_{P}\left[\int_{0}^{T} X_{t}^{2} d[\tilde{N}]_{t}\right]<\infty \quad \text { and } \quad E_{P}\left[\int_{0}^{T} Y_{t}^{2} d[\tilde{N}]_{t}\right]
$$

the stochastic integrals $\int_{0}^{T} X_{t} d \tilde{N}_{t}$ and $\int_{0}^{T} Y_{t} d \tilde{N}_{t}$ are well defined. By squaring out, we obtain

$$
\begin{aligned}
& \left(\int_{0}^{T} X_{t} d \tilde{N}_{t}\right)\left(\int_{0}^{T} Y_{t} d \tilde{N}_{t}\right) \\
& \quad=\frac{1}{2}\left(\left(\int_{0}^{T} X_{t} d \tilde{N}_{t}+\int_{0}^{T} Y_{t} d \tilde{N}_{t}\right)^{2}-\left(\int_{0}^{T} X_{t} d \tilde{N}_{t}\right)^{2}-\left(\int_{0}^{T} Y_{t} d \tilde{N}_{t}\right)^{2}\right) \\
& \quad=\frac{1}{2}\left(\left(\int_{0}^{T}\left(X_{t}+Y_{t}\right) d \tilde{N}_{t}\right)^{2}-\left(\int_{0}^{T} X_{t} d \tilde{N}_{t}\right)^{2}-\left(\int_{0}^{T} Y_{t} d \tilde{N}_{t}\right)^{2}\right)
\end{aligned}
$$

Taking P-expectations on both sides, using linearity and applying the isometry property of the stochastic integral to all three terms on the right-hand side (\widetilde{N} is a (P, \mathbb{F})-martingale as shown in Exercise 9.2 (a)), we obtain

$$
\begin{aligned}
E_{P} & {\left[\left(\int_{0}^{T} X_{t} d \widetilde{N}_{t}\right)\left(\int_{0}^{T} Y_{t} d \widetilde{N}_{t}\right)\right] } \\
& =\frac{1}{2}\left(E_{P}\left[\int_{0}^{T}\left(X_{t}+Y_{t}\right)^{2} d[\widetilde{N}]_{t}\right]-E_{P}\left[\int_{0}^{T} X_{t}^{2} d[\widetilde{N}]_{t}\right]-E_{P}\left[\int_{0}^{T} Y_{t}^{2} d[\widetilde{N}]_{t}\right]\right) \\
& =E_{P}\left[\int_{0}^{T} X_{t} Y_{t} d[\widetilde{N}]_{t}\right]=E_{P}\left[\int_{0}^{T} X_{t} Y_{t} d N_{t}\right],
\end{aligned}
$$

as desired. The last equality follows from the fact that $[\widetilde{N}]=N$, as shown in Exercise 9.2 (b) in the exercise sheet.

Question 5

(a) Since M is a (P, \mathbb{F})-supermartingale, we have for all $0 \leq s \leq t \leq T$ that $M_{s}-E_{P}\left[M_{t} \mid \mathcal{F}_{s}\right] \geq$ $0 P$-a.s. Taking the expectation of the left-hand side gives

$$
E_{P}\left[M_{s}-E_{P}\left[M_{t} \mid \mathcal{F}_{s}\right]\right]=E_{P}\left[M_{s}\right]-E_{P}\left[M_{t}\right]=C-C=0
$$

But every nonnegative random variable with zero P-expectation is P-a.s. equal to zero (as shown in Exercise 1.2 in the exercise sheets). So we have $E_{P}\left[M_{t} \mid \mathcal{F}_{s}\right]=M_{s} P$-a.s., which is the martingale property of M. Integrability and adaptedness follow from the fact that M is a (P, \mathbb{F})-supermartingale.
(b) Let us define the process $Y=\left(Y_{t}\right)_{t \in[0, T]}$ by

$$
Y_{t}=\int_{0}^{t} \lambda(s) d W_{s}
$$

Using the hint and the assumption that $\lambda \in L_{l o c}^{2}(W)$, we see that Y is in fact a continuous local (P, \mathbb{F})-martingale. The process Z is thus explicitly given by

$$
\begin{equation*}
Z_{t}=\exp \left(Y_{t}-\frac{1}{2}\langle Y\rangle_{t}\right)=\exp \left(\int_{0}^{t} \lambda(s) d W_{s}-\frac{1}{2} \int_{0}^{t} \lambda^{2}(s) d s\right) \tag{3}
\end{equation*}
$$

and it is in particular also a local (P, \mathbb{F})-martingale. Taking expectations on both sides of (3) and using the fact that

$$
\int_{0}^{t} \lambda(s) d W_{s} \sim \mathcal{N}\left(0, \int_{0}^{t} \lambda^{2}(s) d s\right)
$$

because λ is a deterministic function (see Exercise $12.3(\mathrm{~b})$ in the exercise sheets), we obtain that $E\left[Z_{t}\right]=1$ for all $t \in[0, T]$. In particular, Z is integrable. But since Z is also positive, we can apply Fatou's lemma to show that it is in fact a (P, \mathbb{F})-supermartingale. Indeed, let $\left(\tau_{n}\right)_{n \in \mathbb{N}}$ be a localising sequence for Z. Then we have for all $0 \leq s \leq t \leq T$ that

$$
E_{P}\left[Z_{t} \mid \mathcal{F}_{s}\right]=E_{P}\left[\liminf _{n \rightarrow \infty} Z_{t}^{\tau_{n}} \mid \mathcal{F}_{s}\right] \leq \liminf _{n \rightarrow \infty} E_{P}\left[Z_{t}^{\tau_{n}} \mid \mathcal{F}_{s}\right]=\liminf _{n \rightarrow \infty} Z_{s}^{\tau_{n}}=Z_{s}
$$

But according to (a), every (P, \mathbb{F})-supermartingale with a constant expectation is a true (P, \mathbb{F})-martingale and we are done.
Alternatively, and more simply, one could recall the Novikov's condition that is briefly mentioned in the lecture notes and which says that if $L=\left(L_{t}\right)_{t \in[0, T]}$ is a continuous local (P, \mathbb{F})-martingale with $L_{0}=0$ and $E_{P}\left[\frac{1}{2}\langle L\rangle_{T}\right]<\infty$, then $\mathcal{E}(L)$ is a true (P, \mathbb{F})-martingale on $[0, T]$. In our case, we have that

$$
E_{P}\left[e^{\frac{1}{2}\langle Y\rangle_{T}}\right]=E_{P}\left[e^{\frac{1}{2} \int_{0}^{T} \lambda^{2}(s) d s}\right]=e^{\frac{1}{2} \int_{0}^{T} \lambda^{2}(s) d s}<\infty
$$

so the result follows.
(c) We first compute the P-dynamics of the discounted price process $S^{1}=\widetilde{S}^{1} / \widetilde{S}^{0}$. Direct application of Itô's formula (or the product rule) to the semimartingale ($\widetilde{S}^{0}, \widetilde{S}^{1}$) and the C^{2} function $\mathbb{R}_{++}^{2} \ni(x, y) \mapsto x / y$ yields

$$
\begin{equation*}
\frac{d S_{t}^{1}}{S_{t}^{1}}=\left(\mu_{1}-r(t)\right) d t+\sigma_{1} d W_{t} \tag{4}
\end{equation*}
$$

Define $\lambda:[0, T] \mapsto \mathbb{R}$ by $\lambda(s):=\left(\mu_{1}-r(s)\right) / \sigma_{1}$ and the process $Z=\left(Z_{t}\right)_{t \in[0, T]}$ by

$$
Z_{t}:=\mathcal{E}\left(-\int \lambda(s) d W_{s}\right)_{t}
$$

Since λ is left-continuous and bounded, (b) gives that Z is a positive (P, \mathbb{F})-martingale with $E_{P}\left[Z_{t}\right]=1$ for all $t \in[0, T]$, and thus the density process of some measure $Q \approx P$. Girsanov's theorem gives that

$$
W_{t}^{Q}:=W_{t}-\left\langle W,-\int \lambda(s) d W_{s}\right\rangle_{t}=W_{t}+\int_{0}^{t} \lambda(s) d s=W_{t}+\int_{0}^{t} \frac{\mu_{1}-r(s)}{\sigma_{1}} d s
$$

is a (Q, \mathbb{F})-Brownian motion. By (4), the Q-dynamics of S^{1} are given by

$$
\frac{d S_{t}^{1}}{S_{t}^{1}}=\left(\mu_{1}-r(t)\right) d t-\left(\mu_{1}-r(t)\right) d t+\sigma_{1} d\left(W_{t}+\int_{0}^{t} \frac{\mu_{1}-r(s)}{\sigma_{1}} d s\right)=\sigma_{1} d W_{t}^{Q}
$$

In other words, $S^{1}=\mathcal{E}\left(\sigma_{1} W^{Q}\right)$, which is a (Q, \mathbb{F})-martingale.
(d) The arbitrage-free price at time t of the discounted payoff H is given by

$$
\begin{aligned}
V_{t} & =E_{Q}\left[\left.\frac{\left(\widetilde{S}_{T}^{1}\right)^{p}}{\widetilde{S}_{T}^{0}} \right\rvert\, \mathcal{F}_{t}\right]=\left(\widetilde{S}_{T}^{0}\right)^{p-1} E_{Q}\left[\left(S_{T}^{1}\right)^{p} \mid \mathcal{F}_{t}\right]=\left(\widetilde{S}_{T}^{0}\right)^{p-1}\left(S_{t}^{1}\right)^{p} E_{Q}\left[\left.\left(\frac{S_{T}^{1}}{S_{t}^{1}}\right)^{p} \right\rvert\, \mathcal{F}_{t}\right] \\
& =e^{(p-1) \int_{0}^{T} r(s) d s}\left(S_{t}^{1}\right)^{p} E_{Q}\left[\left.e^{p \sigma_{1}\left(W_{T}^{Q}-W_{t}^{Q}\right)-p \frac{\sigma_{1}^{2}}{2}(T-t)} \right\rvert\, \mathcal{F}_{t}\right] \\
& =e^{(p-1) \int_{0}^{T} r(s) d s-p \frac{\sigma_{1}^{2}}{2}(T-t)}\left(S_{t}^{1}\right)^{p} E_{Q}\left[e^{p \sigma_{1}\left(W_{T}^{Q}-W_{t}^{Q}\right)}\right] \\
& =e^{(p-1) \int_{0}^{T} r(s) d s-p \frac{\sigma_{1}^{2}}{2}(T-t)}\left(S_{t}^{1}\right)^{p} e^{\frac{p^{2} \sigma_{1}^{2}(T-t)}{2}} \\
& =: v\left(t, S_{t}^{1}\right),
\end{aligned}
$$

where we have used that $W_{T}^{Q}-W_{t}^{Q}$ is independent of \mathcal{F}_{t} under Q and normally distributed with mean 0 and variance $T-t$. Consequently, the delta of H is given by

$$
\begin{equation*}
\vartheta_{t}=\left.\frac{\partial v}{\partial x}\right|_{(t, x)=\left(t, S_{t}^{1}\right)}=p e^{(p-1) \int_{0}^{T} r(s) d s-p \frac{\sigma_{1}^{2}}{2}(T-t)}\left(S_{t}^{1}\right)^{p-1} e^{\frac{p^{2} \sigma_{1}^{2}(T-t)}{2}} \tag{5}
\end{equation*}
$$

and the price at time 0 is

$$
V_{0}=v\left(0, S_{0}^{1}\right)=e^{(p-1) \int_{0}^{T} r(s) d s-p \frac{\sigma_{1}^{2}}{2} T} e^{\frac{p^{2} \sigma_{1}^{2} T}{2}}
$$

