Question 1
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Question 2

(a)

By definition, P.(S') is given by all probability measures @ on (2, F) that are equivalent
to P and satisfy Eg [SH = S&. Since 2 is a finite set, all such probability measures can
be characterized by the probability vectors (g1, g2, ¢q3) € (0, 1)3 with ¢1 + g2 + g3 = 1 and

Yi
(1+7)
— qql4+d+qel+m)+g(l+u)=1+r
= qd+@mtqgu=r
<= —0.2¢; +0.1¢g2 + 0.3¢g3 = 0.1. (1)

Eq[Si] =8 = EQ[[q’g ]:3’3 — EgVi]=1+r

Setting g1 = a, we obtain that g3 = 1 — a — g2 from the condition ¢; + g2 + ¢3 = 1 and
thus from (1) that

5!
0.1g2 =0.1402a0—-03(1l —a—q2) <= —-02¢=-02+05a <= ¢p=1- Pl
It thus follows that

3

5
Q3:1—a—1+§a:§a.

Since we must have (q1, g2, ¢3) € (0, 1)3, we can only take o € (0,2/5). So

P.(S') = {Qa = (a,l — ga, ga> S € <0, g)}

Parametrising instead ¢o := «, analogous computations lead to

P.(S') = {Qa = (? — %a,a,%— §a> :a € (0, 1)},

and parametrising instead ¢3 := « to

P,(SY) = {Qa = <§a,1 _ ga,a> ae <o, 2)}

Since every martingale is a local martingale (with respect to the same probability measure
and filtration), we clearly have that Pc(S') C Peoc(S'). To show the opposite inclusion,
we note that S is bounded P-a.s. by a fixed constant C because  is finite, and so is
then (S')” for any F-stopping time 7. Fix a Q € P 1oc(S') and let (7,,),,cy be a localising
sequence for S'. Then each (S1)™ is a (@, F)-martingale and Q-a.s. bounded by C because
@ ~ P. So the dominated convergence theorem then gives

Eq [Si] = Eq [nh_{go Sll/\Tn] = nh_g)lo Eq [Sipr,] = nh_)rgo Sonr, = S0-

So S! is in fact a (Q,F)-martingale, which means that Q € P.(S'). This shows that
Pe,loc(Sl) C P.(S') and concludes the proof.

The set of all arbitrage-free prices for C (511) is given by

M = {E
Using the parametrisation of P.(S') from (a), we compute
1 5 3 30

So we conclude that M = (0, %) because o € (0, %)

C(S1)
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(d) We have from (c) that

sup —

sup FE [ a=—.
Q ac(0,2/5) 11 11

. 1 ~ ~
C<S%>}= sup  Eo, [O(S%)
QE]PE(Sl)

] - 30 12
a€(0,2/5) 1+r

1+7r
The value % is clearly attained for a = %, which means that it is attained under the
probability measure @* characterized by the probability vector (%, 0, %) Q™ is clearly not
equivalent to P, but since P[{w}] = 0 implies Q*[{w}] = 0, @* is absolutely continuous
with respect to P. (In fact, P[{w}] = 0 is never true so that by the logical fact that an
empty premise implies every conclusion, any probability measure on (2, F) is absolutely
continuous with respect to P.)

Sl is also a (Q*,F)-martingale since

1 (2 3 116439 1
Eg-[Si] = —=x [z x8+Zx13)=— = — x11=10=5j.
@ [51] 1.1X<5>< 5> ) 117" 5 1" 0

The Q*-integrability of S is trivial since S* is bounded, and adaptedness does not depend
on the probability measure.



Question 3

(a)

Let (Xy),cn be a sequence of simple random variables of the form

n
Xn = Zmi,n]lAiyn
=1

for some constants x1,,...,Tn, > 0 and some sets Aj,,...,A,, € F with X, T X
pointwise as n — oco. We have seen that such a sequence exists, for instance in the solution
to Exercise 2.3 of the exercise sheets. We compute

n
EQ sz nEQ ]lAln sz nQ zn Zmi,nEP [D]}-Aim]

=1 =1

n
D Z aj‘i,n]lAi n

=1

By the monotone convergence theorem, we immediately obtain that Eg [X,] T Eg [X] as
n — oco. But since D > 0, we also clearly have that DX,, T DX and another application
of the monotone convergence theorem thus gives that Ep [DX,] 1 Ep [DX]. Therefore,
taking the limit on both sides of (2) gives Eqg [X] = Ep [DX] as desired.

We compute
Eq Y] =Ep[DY]| = Ep[Ep DY |F}]| = Ep [YEp [D|F]] = Ep [Z;Y].

The first equality uses (a), the second one uses the tower property of conditional expec-
tation, the third one the Fi-measurability and nonnegativity of Y, and the last one the
definition of Zj,.

We compute
P P k 7 Q Zk .

The first equality is obvious because Z; > 0 P-a.s., and the second one follows from (b)
since Y/Zj, is nonnegative by nonnegativity of Z; and Y and also Fj-measurable as a ratio
of two JFj-measurable random variables.

By the definition of conditional expectation, we need to show that
1
EQ[Eq Uk | Fjl14] = Eq [Z-EP [Z1Uk | F;] ]1A]
J

for all A € F;. We fix A € F; and compute
EQ[Eq Uk | Fjl 4] = Eq [Uyla] = Ep [Z,UxLa] = Ep|Ep [ZxUy | Fj] L4]

1
= Eq [ZjEp (21U | ] 114 .

The first and the third equality follow from the definition of conditional expectation, the
second one from (b), and the last one uses (c) with the fact that Ep [Z,U}, | F;] 14 is non-
negative by the nonnegativity of Uy, and Zj, and also Fj-measurable. Indeed, a conditional
expectation with respect to F; is Fj-measurable and 1 4 is also Fj-measurable since A € F;
by assumption.

If N is F-adapted, then ZN is [F-adapted since the product of measurable functions is a
measurable function. Conversely, if ZN is F-adapted, then N is F-adapted for the same
reason since N = %ZN and Z > 0. The same argument shows that Z is nonnegative if
and only if ZN is nonnegative.



Now, N is Q-integrable if and only if ZN is P-integrable because for any k € {0,1,...,T},
we have by (b) that

Ep[|ZgNi|| = Ep [Zg|Ni|] = Eq [|Nk]] -

Finally, N > 0 satisfies the martingale property under @ if and only if ZN > 0 satisfies
the martingale property under P. Indeed, note that by (d), we have for any k € {1,...,T'}
that

1
Eq [Ny | Fr-1] = KEP [Zk N | Fr—1] s

which gives that

Eq [Nk |Fr-1] = Npo1 = Ep[ZkN | Fi-1) = Nk—1

k-1
<  Ep[ZyNy] = Zp_1 Nk

since Zp_1 > 0.



Question 4

(a)

Z° is clearly positive by definition for all ¢ > —1. Furthermore, using the fact that
Ny — Ns ~ Poi(A(t — s)) and the knowledge of the moment generating function of the
Poisson distribution, we compute

_ —Ad(t—s) (N¢—Ns)log(140)
77 ]:5} e FE e

]_-8] —E [B(Nt—NS)log(l—l—o)—)\a(t—s)

— e—)\a(t—s)ez\(t—s)(l-‘,-o—l) -1

Here we do not have to worry about the integrability of Z? when verifying the martingale
condition since Z? > 0 for ¢ > —1. Using the martingale property of Z7, it also follows
for any o > —1 and ¢ € [0, 7] that

Ep|Z7] = Ep|Z5] =1
since Ng = 0 P-a.s.
First, since Q7 ~ P for any o > —1, we immediately obtain that {Ny # 0} is a Q7-nullset
because it is a P-nullset and that
{weQ :1]0,T] >t Ny(w) is not RCLL with jumps of size 1}

is a Q7-nullset because it is P-nullset. So Ny = 0 Q7-a.s. and Q7-almost all trajectories of
N are RCLL with jumps of size 1.

Now we compute the conditional moment generating function of the increment N; — N,
0<s<t<T,under Q7. It is given by

Eqe |:6u(Nths) ]_—8] _ LEP [deu(Nths)

44
— ¢~ Nslog(l+o)tros [eNt log(140)=Aot ,u(Ne—Ns)

7|

— =9, [e(Nt—NS)log(l—i—a)eu(Nt—Ns)

fs}
e N9 B, |:€(NthS)(log(1+a)+u)] — o Ao(t=s) A(t—s) (el Fu_1)

ef)\a(tfs) e)\(tfs)((1+a)e“fl) —A(1+0)(t—s)(e“—1) )

=e

The first equality follows from the Bayes formula, the third from the Fg-measurability of
eNs108(149) “the fourth from the independence of Ny — N, of F, under P, and the fifth from
the fact that Ep [e(log(l+")+“)(Nt_Ns)] is the moment generating function of Poi(A(t — s))
evaluated at log(1 + o) + u.

The last expression above is in fact the moment generating function of Poi(A(1+40)(t —s))
and thus shows that Ny — Ny ~ Poi(A(1 + o)(t — s)). Furthermore, since the expression
does not depend on w € Q, we can also conclude that e*(™¢=Ns) is independent of F,
under @7, by which we can conclude the same about N; — N since is can be written as a
continuous (therefore measurable) transformation of e*(Ve=Ns)  We can thus conclude that
N is (Q°,TF)-Poisson process with parameter A(1 + o) > 0.

Since X and Y are predictable and satisfy

Ep [ /OTxfd[mt] <oo and Ep [ /OTYEd[N]t],

the stochastic integrals fOT X,dN, and fOT Y,dN, are well defined. By squaring out, we
obtain

([ xas) ([ ) o
(( / X,dN; + / Ytht> ( / Xtht> - ( /0 Y:dﬁt> )
:;<</OT(Xt—|—Yt dNt> (/ Xtht> —</OTYthft> )



Taking P-expectations on both sides, using linearity and applying the isometry property

of the stochastic integral to all three terms on the right-hand side (N is a (P, F)-martingale
as shown in Exercise 9.2 (a)), we obtain

o () o) (o)

T Ry R )

_ By [ /0 ' Xthd[]\Nf]t] — Ep [ /0 ! XthdNt] ,

as desired. The last equality follows from the fact that [N] = N, as shown in Exercise 9.2 (b)
in the exercise sheet.



Question 5

(a)

Since M is a (P, F)-supermartingale, we have for all 0 < s < ¢ < T' that M;— Ep [M; | Fs] >
0 P-a.s. Taking the expectation of the left-hand side gives

Ep|M;— Ep[M|Fi]] = Ep[M,| — Ep[My) =C — C =0.

But every nonnegative random variable with zero P-expectation is P-a.s. equal to zero (as
shown in Exercise 1.2 in the exercise sheets). So we have Ep [M; | Fs] = M P-a.s., which
is the martingale property of M. Integrability and adaptedness follow from the fact that
M is a (P, F)-supermartingale.

Let us define the process Y = (Y3)¢(o 17 by

t
Yt:/ A(s)dWs.
0

Using the hint and the assumption that A € L2 (W), we see that Y is in fact a continuous

loc

local (P, F)-martingale. The process Z is thus explicitly given by

wam<m_;m0:wm(ﬂx@@m—;ﬁx%wg (3)

and it is in particular also a local (P,F)-martingale. Taking expectations on both sides
of (3) and using the fact that

/Ot)\(s)dWs ~N (0, /Ot )\Q(s)ds>

because A is a deterministic function (see Exercise 12.3 (b) in the exercise sheets), we obtain
that E[Z;] =1 for all t € [0, T]. In particular, Z is integrable. But since Z is also positive,
we can apply Fatou’s lemma to show that it is in fact a (P,F)-supermartingale. Indeed,
let (Tn)neN be a localising sequence for Z. Then we have for all 0 < s <t < T that

Ep|Z|F,) = Ep [lirg inf Z7"

fs} < liminf Ep [Z]" | F,] = liminf Z7" = Z,.
n—oo n—oo

But according to (a), every (P, F)-supermartingale with a constant expectation is a true
(P, F)-martingale and we are done.

Alternatively, and more simply, one could recall the Nowvikov’s condition that is briefly
mentioned in the lecture notes and which says that if L = (Lt)te[o 7] 1s a continuous local

(P, F)-martingale with Ly = 0 and Ep[%(L)r] < oo, then (L) is a true (P, F)-martingale
on [0,7]. In our case, we have that

Ep [G%W)T] =FEp [e% Jo AQ(S)dS] = e3 Jo A2(s)ds < 00,
so the result follows.

We first compute the P-dynamics of the discounted price process S' = St / SO, Direct

application of Ito6’s formula (or the product rule) to the semimartingale (50, §1) and the
C? function R% | 3 (z,y) — z/y yields

ds}

o~ (n1 — r(t))dt + o1dW. (4)

Define A: [0,T] — R by A(s) := (u1 — 7(s))/o1 and the process Z = (Z¢),c0,11 by

Zy =€ (—/)\(s)dW8>t.



Since A is left-continuous and bounded, (b) gives that Z is a positive (P, F)-martingale
with Ep[Z;] = 1 for all t € [0,T], and thus the density process of some measure @ ~ P.
Girsanov’s theorem gives that

Q ! T —r(s)
W =W, — <VV, - / )\(s)dWS> =W+ / A(s)ds = Wy + / ——=ds
t 0 0 01

is a (Q,F)-Brownian motion. By (4), the Q-dynamics of S' are given by

ds}

1 = (m —r@®)dt = (p —r(t))dt +o01d (Wt - /Ot ’“_r(s)ds> — o1 dW2.

01

In other words, S' = £(0y W), which is a (Q,F)-martingale.

(d) The arbitrage-free price at time ¢ of the discounted payoff H is given by

~ (3)" o l(sh? 1) = (31) (e [(55)

[pal WS- W) —p%L (1—1)

(55"

Vi = Eq Fi

_ e(p—l)f r(s)ds Sl PEQ

7

- 6(P—1)f r(s)ds—p k- A ) |:ep0'1 W WQ)}

Tt(
— elp— 1) [ r(s)ds— zo2 Tt(S) p"l(T 2

= U(t, St ),

where we have used that WJQ - WtQ is independent of F; under ) and normally distributed
with mean 0 and variance T' — t. Consequently, the delta of H is given by
2
9, = _ eV Ji r)is—p%H (70 1)
0% |(t.2)=(t.51)

p—1 p2 a% (T—t)
2

, (5)

and the price at time 0 is

T p2U%T

Vo = 0(0, S1) = =D Ji r(9)ds—p 3T 5




