
Question 1

The correct answers are:

(a) (3)

(b) (2)

(c) (2)

(d) (1)

(e) (1)

(f) (3)

(g) (2)

(h) (2)



Question 2

(a) By definition, Pe(S1) is given by all probability measures Q on (Ω,F) that are equivalent
to P and satisfy EQ

[
S1
1

]
= S1

0 . Since Ω is a finite set, all such probability measures can
be characterized by the probability vectors (q1, q2, q3) ∈ (0, 1)3 with q1 + q2 + q3 = 1 and

EQ
[
S1
1

]
= S1

0 ⇐⇒ EQ

[
S̃1
0

Y1
(1 + r)

]
= S̃1

0 ⇐⇒ EQ [Y1] = 1 + r

⇐⇒ q1(1 + d) + q2(1 +m) + q3(1 + u) = 1 + r

⇐⇒ q1d+ q2m+ q3u = r

⇐⇒ −0.2q1 + 0.1q2 + 0.3q3 = 0.1. (1)

Setting q1 = α, we obtain that q3 = 1 − α − q2 from the condition q1 + q2 + q3 = 1 and
thus from (1) that

0.1q2 = 0.1 + 0.2α− 0.3(1− α− q2) ⇐⇒ −0.2q2 = −0.2 + 0.5α ⇐⇒ q2 = 1− 5

2
α.

It thus follows that

q3 = 1− α− 1 +
5

2
α =

3

2
α.

Since we must have (q1, q2, q3) ∈ (0, 1)3, we can only take α ∈ (0, 2/5). So

Pe(S1) =

{
Qα =̂

(
α, 1− 5

2
α,

3

2
α

)
: α ∈

(
0,

2

5

)}
.

Parametrising instead q2 := α, analogous computations lead to

Pe(S1) =

{
Qα =̂

(
2

5
− 2

5
α, α,

3

5
− 3

5
α

)
: α ∈ (0, 1)

}
,

and parametrising instead q3 := α to

Pe(S1) =

{
Qα =̂

(
2

3
α, 1− 5

3
α, α

)
: α ∈

(
0,

3

5

)}
.

(b) Since every martingale is a local martingale (with respect to the same probability measure
and filtration), we clearly have that Pe(S1) ⊆ Pe,loc(S1). To show the opposite inclusion,
we note that S1 is bounded P -a.s. by a fixed constant C because Ω is finite, and so is
then (S1)

τ for any F-stopping time τ . Fix a Q ∈ Pe,loc(S1) and let (τn)n∈N be a localising
sequence for S1. Then each (S1)

τn is a (Q,F)-martingale and Q-a.s. bounded by C because
Q ≈ P . So the dominated convergence theorem then gives

EQ
[
S1
1

]
= EQ

[
lim
n→∞

S1
1∧τn

]
= lim

n→∞
EQ
[
S1
1∧τn

]
= lim

n→∞
S1
0∧τn = S1

0 .

So S1 is in fact a (Q,F)-martingale, which means that Q ∈ Pe(S1). This shows that
Pe,loc(S1) ⊆ Pe(S1) and concludes the proof.

(c) The set of all arbitrage-free prices for C̃(S̃1
1) is given by

M =

{
EQ

[
C̃(S̃1

1)

1 + r

]
: Q ∈ Pe(S1)

}
.

Using the parametrisation of Pe(S1) from (a), we compute

EQα

[
C̃(S̃1

1)

1 + r

]
=

1

1.1

(
α× 0 +

(
1− 5

2
α

)
× 0 +

3

2
α× 2

)
=

30

11
α.

So we conclude that M =
(
0, 1211

)
because α ∈

(
0, 25
)
.



(d) We have from (c) that

sup
Q∈Pe(S1)

EQ

[
1

1 + r
C̃(S̃1

1)

]
= sup

α∈(0,2/5)
EQα

[
1

1 + r
C̃(S̃1

1)

]
= sup

α∈(0,2/5)

30

11
α =

12

11
.

The value 12
11 is clearly attained for α = 2

5 , which means that it is attained under the
probability measure Q∗ characterized by the probability vector (25 , 0,

3
5). Q∗ is clearly not

equivalent to P , but since P [{ω}] = 0 implies Q∗[{ω}] = 0, Q∗ is absolutely continuous
with respect to P . (In fact, P [{ω}] = 0 is never true so that by the logical fact that an
empty premise implies every conclusion, any probability measure on (Ω,F) is absolutely
continuous with respect to P .)
S1 is also a (Q∗,F)-martingale since

EQ∗
[
S1
1

]
=

1

1.1
×
(

2

5
× 8 +

3

5
× 13

)
=

1

1.1
× 16 + 39

5
=

1

1.1
× 11 = 10 = S1

0 .

The Q∗-integrability of S1 is trivial since S1 is bounded, and adaptedness does not depend
on the probability measure.



Question 3

(a) Let (Xn)n∈N be a sequence of simple random variables of the form

Xn =

n∑
i=1

xi,n1Ai,n

for some constants x1,n, . . . , xn,n ≥ 0 and some sets A1,n, . . . , An,n ∈ F with Xn ↑ X
pointwise as n→∞. We have seen that such a sequence exists, for instance in the solution
to Exercise 2.3 of the exercise sheets. We compute

EQ [Xn] =

n∑
i=1

xi,nEQ
[
1Ai,n

]
=

n∑
i=1

xi,nQ [Ai,n] =

n∑
i=1

xi,nEP
[
D1Ai,n

]
= EP

[
D

n∑
i=1

xi,n1Ai,n

]
= EP [DXn] .

(2)

By the monotone convergence theorem, we immediately obtain that EQ [Xn] ↑ EQ [X] as
n → ∞. But since D > 0, we also clearly have that DXn ↑ DX and another application
of the monotone convergence theorem thus gives that EP [DXn] ↑ EP [DX]. Therefore,
taking the limit on both sides of (2) gives EQ [X] = EP [DX] as desired.

(b) We compute

EQ [Y ] = EP [DY ] = EP [EP [DY |Fk]] = EP [Y EP [D |Fk]] = EP [ZkY ] .

The first equality uses (a), the second one uses the tower property of conditional expec-
tation, the third one the Fk-measurability and nonnegativity of Y , and the last one the
definition of Zk.

(c) We compute

EP [Y ] = EP

[
Zk

1

Zk
Y

]
= EQ

[
1

Zk
Y

]
.

The first equality is obvious because Zk > 0 P -a.s., and the second one follows from (b)
since Y/Zk is nonnegative by nonnegativity of Zk and Y and also Fk-measurable as a ratio
of two Fk-measurable random variables.

(d) By the definition of conditional expectation, we need to show that

EQ
[
EQ [Uk |Fj ]1A

]
= EQ

[
1

Zj
EP [ZkUk |Fj ]1A

]
for all A ∈ Fj . We fix A ∈ Fj and compute

EQ
[
EQ [Uk |Fj ]1A

]
= EQ [Uk1A] = EP [ZkUk1A] = EP

[
EP [ZkUk |Fj ]1A

]
= EQ

[
1

Zj
EP [ZkUk |Fj ]1A

]
.

The first and the third equality follow from the definition of conditional expectation, the
second one from (b), and the last one uses (c) with the fact that EP [ZkUk |Fj ]1A is non-
negative by the nonnegativity of Uk and Zk and also Fj-measurable. Indeed, a conditional
expectation with respect to Fj is Fj-measurable and 1A is also Fj-measurable since A ∈ Fj
by assumption.

(e) If N is F-adapted, then ZN is F-adapted since the product of measurable functions is a
measurable function. Conversely, if ZN is F-adapted, then N is F-adapted for the same
reason since N = 1

ZZN and Z > 0. The same argument shows that Z is nonnegative if
and only if ZN is nonnegative.



Now, N is Q-integrable if and only if ZN is P -integrable because for any k ∈ {0, 1, . . . , T},
we have by (b) that

EP [|ZkNk|] = EP [Zk|Nk|] = EQ [|Nk|] .

Finally, N ≥ 0 satisfies the martingale property under Q if and only if ZN ≥ 0 satisfies
the martingale property under P . Indeed, note that by (d), we have for any k ∈ {1, . . . , T}
that

EQ [Nk |Fk−1] =
1

Zk−1
EP [ZkNk |Fk−1] ,

which gives that

EQ [Nk |Fk−1] = Nk−1 ⇐⇒ 1

Zk−1
EP [ZkNk |Fk−1] = Nk−1

⇐⇒ EP [ZkNk] = Zk−1Nk−1

since Zk−1 > 0.



Question 4

(a) Zσ is clearly positive by definition for all σ > −1. Furthermore, using the fact that
Nt − Ns ∼ Poi(λ(t − s)) and the knowledge of the moment generating function of the
Poisson distribution, we compute

E

[
Zσt
Zσs

∣∣∣∣Fs] = E
[
e(Nt−Ns) log(1+σ)−λσ(t−s)

∣∣∣Fs] = e−λσ(t−s)E
[
e(Nt−Ns) log(1+σ)

]
= e−λσ(t−s)eλ(t−s)(1+σ−1) = 1.

Here we do not have to worry about the integrability of Zσ when verifying the martingale
condition since Zσ > 0 for σ > −1. Using the martingale property of Zσ, it also follows
for any σ > −1 and t ∈ [0, T ] that

EP [Zσt ] = EP [Zσ0 ] = 1

since N0 = 0 P -a.s.

(b) First, since Qσ ≈ P for any σ > −1, we immediately obtain that {N0 6= 0} is a Qσ-nullset
because it is a P -nullset and that

{ω ∈ Ω : [0, T ] 3 t 7→ Nt(ω) is not RCLL with jumps of size 1}
is a Qσ-nullset because it is P -nullset. So N0 = 0 Qσ-a.s. and Qσ-almost all trajectories of
N are RCLL with jumps of size 1.
Now we compute the conditional moment generating function of the increment Nt − Ns,
0 ≤ s ≤ t ≤ T , under Qσ. It is given by

EQσ
[
eu(Nt−Ns)

∣∣∣Fs] =
1

Zσs
EP

[
Zσt e

u(Nt−Ns)
∣∣∣Fs]

= e−Ns log(1+σ)+λσsEP

[
eNt log(1+σ)−λσteu(Nt−Ns)

∣∣∣Fs]
= e−λσ(t−s)EP

[
e(Nt−Ns) log(1+σ)eu(Nt−Ns)

∣∣∣Fs]
= e−λσ(t−s)EP

[
e(Nt−Ns)(log(1+σ)+u)

]
= e−λσ(t−s)eλ(t−s)(e

log(1+σ)+u−1)

= e−λσ(t−s)eλ(t−s)((1+σ)e
u−1) = e−λ(1+σ)(t−s)(e

u−1).

The first equality follows from the Bayes formula, the third from the Fs-measurability of
eNs log(1+σ), the fourth from the independence of Nt−Ns of Fs under P , and the fifth from
the fact that EP

[
e(log(1+σ)+u)(Nt−Ns)

]
is the moment generating function of Poi(λ(t− s))

evaluated at log(1 + σ) + u.
The last expression above is in fact the moment generating function of Poi(λ(1 +σ)(t− s))
and thus shows that Nt − Ns ∼ Poi(λ(1 + σ)(t − s)). Furthermore, since the expression
does not depend on ω ∈ Ω, we can also conclude that eu(Nt−Ns) is independent of Fs
under Qσ, by which we can conclude the same about Nt −Ns since is can be written as a
continuous (therefore measurable) transformation of eu(Nt−Ns). We can thus conclude that
N is (Qσ,F)-Poisson process with parameter λ(1 + σ) > 0.

(c) Since X and Y are predictable and satisfy

EP

[∫ T

0
X2
t d[Ñ ]t

]
<∞ and EP

[∫ T

0
Y 2
t d[Ñ ]t

]
,

the stochastic integrals
∫ T
0 XtdÑt and

∫ T
0 YtdÑt are well defined. By squaring out, we

obtain (∫ T

0
XtdÑt

)(∫ T

0
YtdÑt

)
=

1

2

((∫ T

0
XtdÑt +

∫ T

0
YtdÑt

)2

−
(∫ T

0
XtdÑt

)2

−
(∫ T

0
YtdÑt

)2
)

=
1

2

((∫ T

0
(Xt + Yt)dÑt

)2

−
(∫ T

0
XtdÑt

)2

−
(∫ T

0
YtdÑt

)2
)
.



Taking P -expectations on both sides, using linearity and applying the isometry property
of the stochastic integral to all three terms on the right-hand side (Ñ is a (P,F)-martingale
as shown in Exercise 9.2 (a)), we obtain

EP

[(∫ T

0
XtdÑt

)(∫ T

0
YtdÑt

)]
=

1

2

(
EP

[∫ T

0
(Xt + Yt)

2d[Ñ ]t

]
− EP

[∫ T

0
X2
t d[Ñ ]t

]
− EP

[∫ T

0
Y 2
t d[Ñ ]t

])
= EP

[∫ T

0
XtYtd[Ñ ]t

]
= EP

[∫ T

0
XtYtdNt

]
,

as desired. The last equality follows from the fact that [Ñ ] = N , as shown in Exercise 9.2 (b)
in the exercise sheet.



Question 5

(a) SinceM is a (P,F)-supermartingale, we have for all 0 ≤ s ≤ t ≤ T thatMs−EP [Mt |Fs] ≥
0 P -a.s. Taking the expectation of the left-hand side gives

EP
[
Ms − EP [Mt |Fs]

]
= EP [Ms]− EP [Mt] = C − C = 0.

But every nonnegative random variable with zero P -expectation is P -a.s. equal to zero (as
shown in Exercise 1.2 in the exercise sheets). So we have EP [Mt |Fs] = Ms P -a.s., which
is the martingale property of M . Integrability and adaptedness follow from the fact that
M is a (P,F)-supermartingale.

(b) Let us define the process Y = (Yt)t∈[0,T ] by

Yt =

∫ t

0
λ(s)dWs.

Using the hint and the assumption that λ ∈ L2
loc(W ), we see that Y is in fact a continuous

local (P,F)-martingale. The process Z is thus explicitly given by

Zt = exp

(
Yt −

1

2
〈Y 〉t

)
= exp

(∫ t

0
λ(s)dWs −

1

2

∫ t

0
λ2(s)ds

)
(3)

and it is in particular also a local (P,F)-martingale. Taking expectations on both sides
of (3) and using the fact that∫ t

0
λ(s)dWs ∼ N

(
0,

∫ t

0
λ2(s)ds

)
because λ is a deterministic function (see Exercise 12.3 (b) in the exercise sheets), we obtain
that E [Zt] = 1 for all t ∈ [0, T ]. In particular, Z is integrable. But since Z is also positive,
we can apply Fatou’s lemma to show that it is in fact a (P,F)-supermartingale. Indeed,
let (τn)n∈N be a localising sequence for Z. Then we have for all 0 ≤ s ≤ t ≤ T that

EP [Zt |Fs] = EP

[
lim inf
n→∞

Zτnt

∣∣∣Fs] ≤ lim inf
n→∞

EP [Zτnt |Fs] = lim inf
n→∞

Zτns = Zs.

But according to (a), every (P,F)-supermartingale with a constant expectation is a true
(P,F)-martingale and we are done.
Alternatively, and more simply, one could recall the Novikov’s condition that is briefly
mentioned in the lecture notes and which says that if L = (Lt)t∈[0,T ] is a continuous local
(P,F)-martingale with L0 = 0 and EP

[
1
2〈L〉T

]
<∞, then E(L) is a true (P,F)-martingale

on [0, T ]. In our case, we have that

EP

[
e

1
2
〈Y 〉T

]
= EP

[
e

1
2

∫ T
0 λ2(s)ds

]
= e

1
2

∫ T
0 λ2(s)ds <∞,

so the result follows.

(c) We first compute the P -dynamics of the discounted price process S1 = S̃1/S̃0. Direct
application of Itô’s formula (or the product rule) to the semimartingale (S̃0, S̃1) and the
C2 function R2

++ 3 (x, y) 7→ x/y yields

dS1
t

S1
t

=
(
µ1 − r(t)

)
dt+ σ1dWt. (4)

Define λ : [0, T ] 7→ R by λ(s) := (µ1 − r(s))/σ1 and the process Z = (Zt)t∈[0,T ] by

Zt := E
(
−
∫
λ(s)dWs

)
t

.



Since λ is left-continuous and bounded, (b) gives that Z is a positive (P,F)-martingale
with EP [Zt] = 1 for all t ∈ [0, T ], and thus the density process of some measure Q ≈ P .
Girsanov’s theorem gives that

WQ
t := Wt −

〈
W,−

∫
λ(s)dWs

〉
t

= Wt +

∫ t

0
λ(s)ds = Wt +

∫ t

0

µ1 − r(s)
σ1

ds

is a (Q,F)-Brownian motion. By (4), the Q-dynamics of S1 are given by

dS1
t

S1
t

=
(
µ1 − r(t)

)
dt−

(
µ1 − r(t)

)
dt+ σ1d

(
Wt +

∫ t

0

µ1 − r(s)
σ1

ds

)
= σ1dW

Q
t .

In other words, S1 = E(σ1W
Q), which is a (Q,F)-martingale.

(d) The arbitrage-free price at time t of the discounted payoff H is given by

Vt = EQ

[
(S̃1
T )
p

S̃0
T

∣∣∣∣∣Ft
]

=
(
S̃0
T

)p−1
EQ
[(
S1
T

)p ∣∣Ft] =
(
S̃0
T

)p−1(
S1
t

)p
EQ

[(
S1
T

S1
t

)p ∣∣∣∣Ft]
= e(p−1)

∫ T
0 r(s)ds

(
S1
t

)p
EQ

[
epσ1(W

Q
T −W

Q
t )−pσ

2
1
2
(T−t)

∣∣∣∣Ft]
= e(p−1)

∫ T
0 r(s)ds−pσ

2
1
2
(T−t)(S1

t

)p
EQ

[
epσ1(W

Q
T −W

Q
t )
]

= e(p−1)
∫ T
0 r(s)ds−pσ

2
1
2
(T−t)(S1

t

)p
e
p2σ21(T−t)

2

=: v(t, S1
t ),

where we have used thatWQ
T −W

Q
t is independent of Ft under Q and normally distributed

with mean 0 and variance T − t. Consequently, the delta of H is given by

ϑt =
∂v

∂x

∣∣∣∣
(t,x)=(t,S1

t )

= pe(p−1)
∫ T
0 r(s)ds−pσ

2
1
2
(T−t)(S1

t )
p−1

e
p2σ21(T−t)

2 , (5)

and the price at time 0 is

V0 = v(0, S1
0) = e(p−1)

∫ T
0 r(s)ds−pσ

2
1
2
T e

p2σ21T

2 .


