

Aufgaben und Lösungsvorschlag Aufgabe 1

1.MC1 [1 Punkt] Sei
$$y' = \begin{pmatrix} -3 & 0 \\ 1 & -2 \end{pmatrix} y + \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$
 ein inhomogenes lineares System.

Für welches $y_{\infty,2}$ ist $y_{\infty}=\begin{pmatrix}1\\y_{\infty,2}\end{pmatrix}$ eine stationäre Lösung?

(A)
$$y_{\infty,2} = -\frac{1}{2}$$

(B)
$$y_{\infty,2} = 0$$

(C)
$$y_{\infty,2} = 1$$

(D) **TRUE:**
$$y_{\infty,2} = \frac{1}{2}$$

Lösung:

Aus
$$0 = \begin{pmatrix} -3 & 0 \\ 1 & -2 \end{pmatrix} y_{\infty} + \begin{pmatrix} 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 folgt, dass
$$y_{\infty} = \begin{pmatrix} -3 & 0 \\ 1 & -2 \end{pmatrix}^{-1} \cdot \begin{pmatrix} -3 \\ 0 \end{pmatrix} = \frac{1}{6} \cdot \begin{pmatrix} -2 & 0 \\ -1 & -3 \end{pmatrix} \cdot \begin{pmatrix} -3 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix}.$$

Also ist
$$y_{\infty,2} = \frac{1}{2}$$
.

Alternative, ohne A^{-1} .

Setze $y_{\infty} = \begin{pmatrix} 1 \\ y_{\infty,2} \end{pmatrix}$ ein und rechne: $\begin{pmatrix} -3 & 0 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ y_{\infty,2} \end{pmatrix} = \begin{pmatrix} -3 \\ 1 - 2y_{\infty,2} \end{pmatrix}$. Die zweite Zeile liefert die Gleichung $1 - 2y_{\infty,2} = 0$ und wieder die Lösung $y_{\infty,2} = \frac{1}{2}$.

 ${\bf 1.MC2} \ [{\bf 1} \ {\bf Punkt}] \ {\rm Sei} \ V = M_{4\times 4} \ {\rm der} \ {\rm Vektorraum} \ {\rm der} \ 4\times 4$ - Matrizen mit reellen Einträgen.

Welche Dimension hat der Unterraum $U = \{A \in V \mid A^{\top} = -A\}$? Dabei bezeichnet A^{\top} die transponierte Matrix.

(A)
$$\dim_{\mathbb{R}} U = 2$$

(B) **TRUE:**
$$\dim_{\mathbb{R}} U = 6$$

(C)
$$\dim_{\mathbb{R}} U = 8$$

(D)
$$\dim_{\mathbb{R}} U = 16$$

Es gilt, dass $\dim_{\mathbb{R}} U = 6$. Für eine Matrix $A = (a_{i,j}) \in U$ gilt, dass $a_{j,i} = -a_{i,j}$. Daraus folgt, dass auf der Diagonalen $a_{i,i} = 0$ gilt und, dass die Einträge oberhalb der Diagonalen die Einträge unterhalb der Diagonalen bestimmen. Oberhalb der Diagonale gibt es 6 Einträge in der Matrix, die frei wählbar sind, welche dann A eindeutig bestimmen. Für jeden dieser Einträge gibt es einen Basisvektor.

1.MC3 [1 Punkt] Die Matrix $A = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -2 & 1 \\ 0 & 1 & -2 \end{pmatrix}$ ist **nicht** diagonalisierbar mit Eigenwerten

 $\lambda_1 = -1$ und $\lambda_3 = -3$. Dann ist der fehlende Eigenwert $\lambda_2 \dots$

- (A) $\lambda_2 = 1$.
- (B) **TRUE:** $\lambda_2 = -1$.
- (C) $\lambda_2 = -2$.
- (D) $\lambda_2 = -3$.

Lösung:

Die Spur der Matrix A ist -5. Da die Spur exakt die Summe der Eigenwerte von A ist, und wir zwei Eigenwerte schon gegeben haben, ist der gesuchte Eigenwert $\lambda_2 = -1$, denn dann ist $\lambda_1 + \lambda_2 + \lambda_3 = -5$.

Alternativ folgt dies auch mit der Determinante: Diese ist $-3 = (-1)\lambda_2(-3)$.

 ${\bf 1.MC4} \ \ [{\bf 1} \ {\bf Punkt}] \ \ {\bf Welches} \ J \ {\bf kommt} \ {\bf als} \ {\bf Jordan} \ {\bf Normal form} \ {\bf von} \ A \ {\bf in} \ {\bf 1.MC3} \ {\bf oben} \ {\bf infrage}?$

$$(A) J = \begin{pmatrix} -1 & 0 & 0 \\ 0 & \lambda_2 & 1 \\ 0 & 0 & -3 \end{pmatrix}$$

(B)
$$J = \begin{pmatrix} -1 & 1 & 0 \\ 0 & \lambda_2 & 1 \\ 0 & 0 & -3 \end{pmatrix}$$

(C)
$$J = \begin{pmatrix} -1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$

(D) **TRUE:**
$$J = \begin{pmatrix} -1 & 1 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$

Lösung:

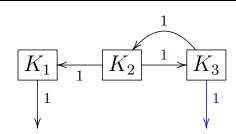
Da die Matrix nicht diagonalisierbar ist, muss J mindestens eine 1 auf der Nebendiagonalen haben. Da $\lambda_1=\lambda_2=-1$, muss

$$J = \begin{pmatrix} -1 & 1 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$

sein.

1.A1 [2 Punkte] Die Matrix A aus **1.MC3 oben** definiert ein lineares DGL-System y' = Ay. Dieses modelliert die Entwicklung in drei Kompartimenten K_1, K_2 und K_3 . Vervollständigen Sie das zugehörige Kompartiment-System in Ihrem Antwortheft unter Aufgabennummer 1.A1.

Das heisst: Geben Sie fehlende Pfeile (mit Richtung) und Beschriftungen an.



- Es fehlt die Beschriftung "1" vom Pfeil der von K_2 nach K_3 geht.
- Es fehlt der Pfeil der von K_3 hinaus geht.
- Es fehlt die Beschriftung "1" vom Pfeil der von K_3 hinaus geht.

1.A2 [2 Punkte] Sei $J = \begin{pmatrix} -1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & -3 \end{pmatrix}$ aus **1.MC4 oben**.

Wir suchen eine Basis des Lösungsraumes \mathcal{L}_J des Systems y' = Jy und wissen schon, dass die Funktion $t \mapsto e^{\lambda_2 t} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ ein Basisvektor ist. Bestimmen Sie zwei fehlende Basisvektoren.

Lösung:

Die allgemeine Lösung dieses Systems ist $t\mapsto e^{tJ}C$ für ein $C\in M_{3\times 1}(\mathbb{R})$. Da die Matrix J in Diagonalform ist gilt, dass $e^{tJ}=\begin{pmatrix} e^{-t} & 0 & 0 \\ 0 & e^{\lambda_2 t} & 0 \\ 0 & 0 & e^{-3t} \end{pmatrix}$. Also sind

$$t \mapsto e^{-t} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad \text{und} \quad t \mapsto e^{-3t} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

die fehlenden Basisvektoren von \mathcal{L}_J . Hier ist $\lambda_2 = -1$.

Alternativ folgt das auch aus der Eigenbasis: Die EW λ_i sind die Diagonaleinträge und die EV e_i .

Notieren Sie Ihre Lösungen in Ihrem Antwortheft unter Aufgabennummer 1.A2.

1.A3 [6 Punkte] Sei nun $J = \begin{pmatrix} -1 & 1 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & -3 \end{pmatrix}$ aus **1.MC4 oben**.

Seien $v_1(t) = \begin{pmatrix} e^{-t} \\ 0 \\ 0 \end{pmatrix}, v_2(t) = \begin{pmatrix} X \\ e^{-t} \\ 0 \end{pmatrix}$ und $v_3(t) = \begin{pmatrix} 0 \\ Y \\ Z \end{pmatrix}$. Bestimmen Sie die fehlenden Koordina-

ten X, Y und Z, sodass $t \mapsto v_1(t), t \mapsto v_2(t)$ und $t \mapsto v_3(t)$ eine Basis des Lösungsraumes \mathcal{L}_J des Systems y' = Jy ergeben.

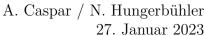
Aus der Formel für das Matrixexponential von Jordanblöcken gilt, dass

$$e^{tJ} = \begin{pmatrix} e^{-t} & te^{-t} & 0\\ 0 & e^{-t} & 0\\ 0 & 0 & e^{-3t} \end{pmatrix}.$$

Die Spalten von $t \mapsto e^{tJ}$ sind eine Basis des Lösungsraumes \mathcal{L}_J , also ist

$$X=te^{-t}\;,\quad Y=0\quad \text{ und } \quad Z=e^{-3t}.$$

Notieren Sie Ihre Lösungen in Ihrem Antwortheft unter Aufgabennummer 1.A3.



Aufgabe 2

2.MC1 [1 Punkt] Sei f die Funktion mit $f(x) = d \cdot x^2 + 2$, einer Konstanten d und $x \in [-1, 1[$. Für welches d hat die 2-periodische Fortsetzung den Fourier-Koeffizienten $a_0 = \frac{8}{3}$?

- (A) **TRUE:** d = -2
- (B) d = -1
- (C) d = 1
- (D) d = 2

Lösung:

Die Lösung ist d = -2. Es muss $a_0 = \int_{-1}^1 f(x) dx = d \int_{-1}^1 x^2 dx + \int_{-1}^1 2 dx = \frac{2}{3} d + 4 \stackrel{!}{=} \frac{8}{3}$ gelten. Also ist $d = \frac{3}{2} \left(\frac{8}{3} - 4 \right) = -2$.

2.MC2 [1 Punkt] Sei $f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(kx) + b_k \sin(kx)$ die Fourier-Reihe einer Funktion f, für die $a_k = \frac{(-1)^k}{k}$ und $b_k = \frac{4(-1)^k}{k^2}$, $k \ge 1$

bekannt sind.

Sei $f'(x) = \sum_{k=1}^{\infty} A_k \cos(kx) + B_k \sin(kx)$ die Fourier-Reihe der Ableitungsfunktion f'. Bestimmen Sie den **zweiten** Fourier-Koeffizienten A_2 dieser Fourier-Reihe.

- (A) $A_2 = 0$
- (B) $A_2 = 1$
- (C) **TRUE:** $A_2 = 2$
- (D) $A_2 = 4$

Lösung:

Die Lösung ist $A_2=2$. Durch Ableiten der Fourier-Reihe von f erhalten wir

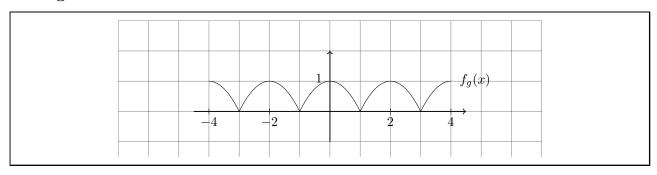
$$f'(x) = \sum_{k=1}^{\infty} (kb_k)\cos(kx) + (-ka_k)\sin(kx) \stackrel{!}{=} \sum_{k=1}^{\infty} A_k\cos(kx) + B_k\sin(kx).$$

Mit Koeffizientenvergleich gilt also, dass $A_k = kb_k$. Somit ist $A_2 = 2b_2 = 2\frac{4(-1)^2}{2^2} = 2$.

2.A1 [4 Punkte] Sei f die Funktion mit $f(x) = 1 - x^2$ und $0 \le x < 1$.

(i) Skizzieren Sie den Graphen der **geraden** Fortsetzung f_g für $-4 \le x \le 4$ in das Koordinatensystem in Ihrem Antwortheft unter Aufgabennummer 2.A1.

Lösung:



(ii) Berechnen Sie die **ersten** reellen Fourier-Koeffizienten a_1 und b_1 dieser Funktion f_g .

Hinweis:
$$\int x^2 \cos(\pi x) \ dx = \frac{2x \cos(\pi x)}{\pi^2} + \frac{(\pi^2 x^2 - 2) \sin(\pi x)}{\pi^3} + C.$$

Notieren Sie Ihre Lösungen in Ihrem Antwortheft unter Aufgabennummer 2.A1.

Lösung:

Die gerade Fortsetzung f_g von f ist eine gerade Funktion und damit $b_k=0$ für alle k, also ist insbesondere $b_1=0$.

Weiter gilt, dass

$$a_1 = \int_{-1}^{1} f_g(x) \cos(\pi x) dx = 2 \int_{0}^{1} f(x) \cos(\pi x) dx = 2 \int_{0}^{1} \cos(\pi x) dx - 2 \int_{0}^{1} x^2 \cos(\pi x) dx$$
$$= \frac{2}{\pi} \left[\sin(\pi x) \right]_{x=0}^{x=1} - 2 \left[\frac{2x \cos(\pi x)}{\pi^2} + \frac{(\pi^2 x^2 - 2) \sin(\pi x)}{\pi^3} \right]_{x=0}^{x=1}$$
$$= 0 + \frac{4}{\pi^2} = \frac{4}{\pi^2}.$$

- **2.A2** [5 Punkte] Gegeben sei $(\mathcal{P}_{\leq 2}, \langle \cdot, \cdot \rangle)$, der Vektorraum der Polynome vom Grad ≤ 2 ausgestattet mit dem Skalarprodukt $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$.
 - (i) Bestimmen Sie die Konstante d, sodass die Vektoren

$${p_1(x) = 1, p_2(x) = x, p_3(x) = x^2 - d}$$

eine **orthogonale** Basis \mathcal{B} bilden.

Hinweis: Beachten Sie die Symmetrieeigenschaften der Funktionen p_1, p_2 und p_3 .

Lösung:

Es muss gelten, dass $\langle p_1, p_3 \rangle = 0$ ļso

$$0 = \langle p_1, p_3 \rangle = \int_{-1}^{1} 1 \cdot (x^2 - d) dx = \int_{-1}^{1} x^2 dx - d \int_{-1}^{1} dx = \left[\frac{x^3}{3} \right]_{x = -1}^{x = 1} - 2d = \frac{2}{3} - 2d$$

Somit muss $d=\frac{1}{3}$ sein Es gilt auch, dass $\langle p_1,p_2\rangle=\langle p_2,p_3\rangle=0$, da dies Integrale von ungeraden Funktionen sind.

(ii) Für den Vektor $q(x) = x^2 \in \mathcal{P}_{\leq 2}$ sei $[q(x)]_{\mathcal{B}} = \begin{pmatrix} X \\ Y \\ 1 \end{pmatrix}$ der Koordinatenvektor bezüglich der **Basis** \mathcal{B} in **Teilaufgabe** (i). Bestimmen Sie die fehlenden Einträge X und Y.

Lösung:

Wir suchen Koeffizienten X und Y mit

$$x^{2} = X \cdot p_{1} + Y \cdot p_{2} + 1 \cdot p_{3} = X \cdot 1 + Y \cdot x + 1 \cdot \left(x^{2} - \frac{1}{3}\right).$$

Schreiben wir $x^2 = \frac{1}{3} + x^2 - \frac{1}{3}$ sehen wir direkt, dass

$$X = \frac{1}{3} \quad \text{und} \quad Y = 0.$$

Alternative:

Aus der Bilinearität des Skalarprodukts und der Orthogonalität der Vektoren p_1, p_2 und p_3 folgt, dass

$$X = \frac{\langle q, p_1 \rangle}{\langle p_1, p_1 \rangle}$$
 und $Y = \frac{\langle q, p_2 \rangle}{\langle p_2, p_2 \rangle}$.

Wir berechnen also

$$\langle q, p_1 \rangle = \int_{-1}^{1} x^2 dx = \left[\frac{x^3}{3} \right]_{x=-1}^{x=1} = \frac{2}{3}$$

$$\langle q, p_2 \rangle = \int_{-1}^{1} x^3 dx = 0$$

$$\langle p_1, p_1 \rangle = \int_{-1}^{1} dx = 2$$

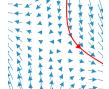
$$\langle p_2, p_2 \rangle = \int_{-1}^{1} x^2 dx = \frac{2}{3}.$$

Daraus folgt, dass $X = \frac{2}{3} = \frac{1}{3}$ und $Y = \frac{0}{2} = 0$ ist.

Notieren Sie Ihre Lösungen in Ihrem Antwortheft unter Aufgabennummer 2.A2.

Aufgabe 3

3.MC1 [1 Punkt] Sei y' = F(y) ein nichtlineares System mit stationärer Lösung y_{∞} und Jacobi-Matrix $DF(y_{\infty}) = \begin{pmatrix} 1 & 0 \\ -1 & d \end{pmatrix}$. Für welches d sieht die Lösungkurve in der Nähe von y_{∞} qualitativ folgendermassen aus?



- (A) **TRUE:** d = -1
- (B) d = 0
- (C) $d = \frac{1}{2}$
- (D) d = 1

Lösung:

Die Lösung ist d=-1. Für solch ein Verhalten muss die Matrix $DF(y_{\infty})$ zwei reelle EW (hier auf der Diagonalen) mit unterschiedlichem Vorzeichen haben.

3.MC2 [1 Punkt] Sei y' = F(y) ein nichtlineares System mit stationärer Lösung y_{∞} und Jacobi-Matrix $DF(y_{\infty}) = \begin{pmatrix} 0 & 1 \\ -1 & \beta \end{pmatrix}$. Für welches β sieht die Lösungkurve in der Nähe von y_{∞} qualitativ folgendermassen aus?

- (A) $\beta = 0$
- (B) **TRUE:** $\beta = -1$
- (C) $\beta = -2$
- (D) $\beta = -4$

Lösung:

Die Lösung ist $\beta = -1$. Für einen solchen Verlauf muss die Matrix $DF(y_{\infty})$ komplexe Eigenwerte $\lambda_1 = a + bi, \lambda_2 = a - bi$ haben, mit $a < 0, b \neq 0$: Die Bedingung a < 0 stellt sicher, dass die Lösung sich mit wachsendem t zum Ursprung hin bewegt, und $b \neq 0$, dass die Lösung dies spiralförmig tut.

Die Eigenwerte der Matrix $DF(y_{\infty})$ sind $\lambda_i = \frac{1}{2}(\beta \pm \sqrt{\beta^2 - 4})$. Damit der Realteil negativ ist, muss $\beta < 0$ sein, und damit die Lösungen komplex sind muss der Radikand $\beta^2 - 4 < 0$ sein. Dies ist der Fall für $\beta^2 < 4$. Beide Bedingungen gleichzeitig sind also erfüllt für $-2 < \beta < 0$.

Somit ist $\beta = -1$

3.MC3 [1 Punkt] In einem Räuber-Beute-Modell beschreibe x die Räuberpopulation und y die Beutepopulation:

$$x'(t) = -\frac{1}{3} \cdot x(t) + \frac{1}{90} \cdot x(t) \cdot y(t)$$

$$y'(t) = \frac{1}{5} \cdot y(t) \left(10 - \frac{1}{4} \cdot y(t)\right) - \frac{1}{10} \cdot x(t) \cdot y(t)$$

Der Räuberbestand zu Beginn sei x(0) = 5. Für welche Beute y(0) bleibt y konstant?

- (A) y(0) = 10
- (B) y(0) = 20
- (C) **TRUE:** y(0) = 30
- (D) y(0) = 40

Lösung:

Die Lösung ist y(0) = 30. Sei (x(t), y(t)) eine Lösung des Systems mit $y(t) = y_{\infty}$ konstant und x(0) = 5 ist. Aus der ersten Gleichung folgt, dass

$$x'(t) = \left(-\frac{1}{3} + \frac{1}{90}y_{\infty}\right) \cdot x(t)$$

gilt. Also folgt mit der Anfangsbedingung x(0) = 5, dass

$$x(t) = 5e^{\left(-\frac{1}{3} + \frac{1}{90}y_{\infty}\right)t}.$$

Setzen wir das in die zweite Gleichung für $y(t)=y_{\infty}$ ein, erhalten wir

$$0 = \frac{1}{5}y_{\infty} \left(10 - \frac{1}{4}y_{\infty} \right) - \frac{1}{10} 5e^{\left(-\frac{1}{3} + \frac{1}{90}y_{\infty}\right)t} y_{\infty}.$$

Damit das für alle t gilt, muss $y_{\infty} = 30$ gelten.

3.MC4 [1 Punkt] Seien x(0) = 0 und y(0) = 80 im Modell von 3.MC3. Was passiert?

- (A) Die Beute wächst unbegrenzt.
- (B) Die Beute stirbt aus.
- (C) Die Beute wächst bis an eine Grenze $y_{\infty} > 0$.
- (D) **TRUE:** Die Beute reduziert sich bis an eine Grenze $y_{\infty} > 0$.

Lösung:

Die Lösung ist, dass die Beute reduziert sich bis an eine Grenze $y_{\infty} > 0$. Mit x(0) = 0 ist auch konstant x(t) = 0 für alle t.

Damit vereinfacht sich die zweite Gleichung zur Logistischen DGL:

$$y'(t) = \frac{1}{5} \cdot y(t) \cdot \left(10 - \frac{1}{4} \cdot y(t)\right).$$

Wir lesen ab, dass y'(0) < 0 für y(0) = 80, also nimmt die Beute zunächst ab. Da y(t) > 0 ist das Vorzeichen der rechten Seite durch die Klammer als zweiter Faktor bestimmt:

Es ist $10 - \frac{1}{4}y(t) < 0$ für y(t) > 40 und $y_{\infty} = 40$ eine stationäre Lösung, die nicht unterschritten werden kann.

3.A1 [2 Punkte] Gegeben sei das System y' = F(y) mit

$$y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$
 und $F(y) = \begin{pmatrix} y_1 y_2 - y_1^2 \\ \cos(y_1) - \sin(y_2) \end{pmatrix}$.

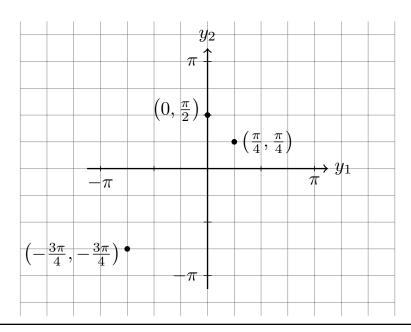
Im Quadrat $\{(x,y)| -\pi \le x \le \pi, -\pi \le y \le \pi\}$ hat das System drei Fixpunkte.

Zeichnen Sie zwei von diesen in das Koordinatensystem in Ihrem Antwortheft unter Aufgabennummer 3.A1.

Lösung:

Die drei Fixpunkte sind (wie in Serie 8, Aufgabe 1)

$$(y_1, y_2) = \left(\frac{\pi}{4}, \frac{\pi}{4}\right), \quad (y_1, y_2) = \left(0, \frac{\pi}{2}\right) \quad \text{und} \quad \left(-\frac{3\pi}{4}, -\frac{3\pi}{4}\right).$$



3.A2 [4 Punkte] Gegeben sei folgendes Modell $\binom{S'}{I'} = F(S, I)$ mit c, w > 0 konstant und:

$$S'(t) = -cS(t)I(t) + wI(t),$$

$$I'(t) = cS(t)I(t) - wI(t).$$

(i) Bestimmen Sie die Fixpunkte (S_{∞}, I_{∞}) mit $I_{\infty} > 0$.

Lösung:

Die Fixpunkte sind $(S_{\infty}, I_{\infty}) = (w/c, I_{\infty})$ mit I_{∞} frei in $(0, \infty)$.

(ii) Berechnen Sie jeweils die Jacobi-Matrix $DF(S_{\infty}, I_{\infty})$. Können Sie eine Aussage über das Verhalten einer Lösung machen, welche nahe bei einem (S_{∞}, I_{∞}) startet?

Lösung:

Die Vektorfeld
$$F$$
 ist $F(S,I) = \begin{pmatrix} -cSI + wI \\ cSI - wI \end{pmatrix}$ und weiter $DF(S,I) = \begin{pmatrix} -cI & -cS + w \\ cI & cS - w \end{pmatrix}$ und damit
$$DF(S_{\infty},I_{\infty}) = \begin{pmatrix} -cI & 0 \\ cI & 0 \end{pmatrix}$$

für jeden Fixpunkt. Also hat $DF(S_{\infty}, I_{\infty})$ die Eigenwerte -Ic und 0.

Hier lässt sich der Satz von Hartman-Grobman nicht anwenden, da ein EW den Realteil 0 hat.

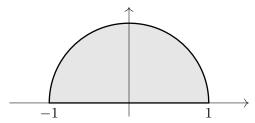
Notieren Sie Ihre Lösungen in Ihrem Antwortheft unter Aufgabennummer 3.A2.

Aufgabe 4

Lösen Sie die Laplace-Gleichung

$$\Delta u = 0 \tag{PDE}$$

in Polarkoordinaten auf dem Halbkreis mit Radius 1:



Es gelten die Randbedingungen

$$u(1,\varphi)=1 \quad \text{für } 0<\varphi<\pi \qquad \qquad \text{(oberer Rand)}$$

$$u(r,0)=u(r,\pi)=0 \quad \text{für } 0\leq r<1 \qquad \qquad \text{(unterer Rand)}$$

4.A1 [3 Punkte] Machen Sie den Separationsansatz $u(r,\varphi) = f(r)g(\varphi)$ und bestimmen Sie die Differentialgleichungen für die Funktionen f und g.

Hinweis. Der Laplace-Operator in Polarkoordinaten lautet

$$\Delta u = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\varphi\varphi}$$

Lösung:

Es gilt, dass

$$0 = \Delta u = f''(r)g(\varphi) + \frac{1}{r}f'(r)g(\varphi) + \frac{1}{r^2}f(r)\ddot{g}(\varphi)$$

und nach Multiplikation mit $\frac{r^2}{f(r)g(\varphi)}$ erhält man

$$\frac{1}{f(r)} \Big(r^2 f''(r) + r f'(r) \Big) = -\frac{\ddot{g}(\varphi)}{g(\varphi)}.$$

Da die linke Seite nur von r und die rechte Seite nur von φ abhängt, müssen beide Seiten konstant ω^2 sein.

Die beiden gesuchten Differentialgleichungen sind also

$$r^2 f''(r) + r f'(r) - f(r)\omega^2 = 0$$
 und $\ddot{g}(\varphi) = -\omega^2 g(\varphi)$.

Notieren Sie Ihre Lösungen in Ihrem Antwortheft unter Aufgabennummer 4.A1.

4.A2 [3 Punkte] Bestimmen Sie die Lösungen der Differentialgleichung für die Funktion g. Beachten Sie dabei, dass wegen der Randbedingung am unteren Rand $g(0) = g(\pi) = 0$ gilt.

Der Ansatz für g ist

$$g(\varphi) = A\cos(\omega\varphi) + B\sin(\omega\varphi)$$

und da $g(0) = g(\pi) = 0$, muss A = 0 und $\omega = \omega_n := n \in \mathbb{N}$ gelten. Für jedes $n \in \mathbb{N}$ genügt also

$$g_n(\varphi) = B_n \sin(n\varphi)$$

der Differentialgleichung für g mit den unteren Randbedingungen $g(0) = g(\pi) = 0$.

Notieren Sie Ihre Lösungen in Ihrem Antwortheft unter Aufgabennummer 4.A2.

4.A3 [4 Punkte] Bestimmen Sie zu jedem g die passende Lösung der Differentialgleichung für f, so dass $u(r,\varphi) = f(r)g(\varphi)$ eine Lösung von (PDE) ist, welche der Randbedingung am unteren Rand genügt. Schreiben Sie die so gefundenen Basislösungen $u(r,\varphi) = f(r)g(\varphi)$ explizit hin.

Lösung:

Für jedes g_n ist f_n eine Lösung von

$$r^{2}f_{n}''(r) + rf_{n}'(r) - f_{n}(r)n^{2} = 0.$$

Mit dem Ansatz $f_n(r) = r^{\alpha}$ gilt, dass

$$\alpha(\alpha - 1) + \alpha - n^2 = \alpha^2 - n^2 = 0.$$

Also ist $\alpha \in \{-n, n\}$. Da mit $\alpha = -n$ eine Singularität bei r = 0 entsteht, kommt nur $\alpha = n$ infrage. Also ist

$$f_n(r) = r^n.$$

Wir erhalten also

$$u_n(r,\varphi) = r^n B_n \sin(n\varphi).$$

Notieren Sie Ihre Lösungen in Ihrem Antwortheft unter Aufgabennummer 4.A3.

4.A4 [5 Punkte] Finden Sie durch Superposition diejenige Lösung von (PDE) welche zusätzlich der Randbedingung am oberen Rand genügt.

Hinweis. Setzen Sie die Randfunktion am oberen Rand als ungerade Funktion mit Periode 2π fort.

Lösung:

Der Ansatz

$$u(r,\varphi) = \sum_{n=1}^{\infty} r^n B_n \sin(n\varphi)$$

genügt den unteren Randbedingungen und der PDE (vorausgesetzt die Summe konvergiert). Sei $h_u(\varphi)$ die ungerade 2π -periodische fortsetzung der oberen Randbedigung.

Die Koeffizienten B_n wählt man also so, dass die oberen Randbedigungen erfüllt sind, das

heisst,

$$u(1,\varphi) = \sum_{n=1}^{n} B_n \sin(n\varphi) = h_u(\varphi) = \sum_{n=1}^{\infty} b_n \sin(n\varphi),$$

wobei b_n die Fourier-koeffizienten von \boldsymbol{h}_u sind, also

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} h_u(\varphi) \sin(n\varphi) d\varphi = \frac{2}{\pi} \int_{0}^{\pi} \sin(n\varphi) d\varphi$$
$$= \frac{2}{\pi} \left[-\frac{\cos(n\varphi)}{n} \right]_{\varphi=0}^{\varphi=\pi} = \frac{2}{\pi n} \left(1 - (-1)^n \right).$$

Also ist mit Koeffizientenvergleich $B_n = b_n = 0$ für n gerade und $B_n = b_n = 4/(\pi n)$ für n ungerade und damit

$$u(r,\varphi) = \sum_{k=0}^{\infty} \frac{4}{\pi(2k+1)} r^{2k+1} \sin\left((2k+1)\varphi\right).$$

Notieren Sie Ihre Lösungen in Ihrem Antwortheft unter Aufgabennummer 4.A4.