

Exam Probability Theory

401-3601-00L

Last Name

First Name

Legi-Nr.

XX-000-000

Exam-No.

000

Please do not turn the page yet!

Please take note of the information on the answer-booklet.

All random variables are defined on an a fixed implicit probability space (Ω, \mathcal{F}, P) .

For a real random variable X, we write E(X) for its expectation, and ϕ_X for its characteristic function, defined by

$$\forall t \in \mathbb{R} \quad \phi_X(t) = \mathcal{E}(e^{itX}).$$

 \mathbb{N} denotes the set $\{0, 1, 2, \ldots\}$ of non-negative integers.

The last page contains some additional results from the lectures that you may use without proof.

Exercise 1

Let $(X_n)_{n\geq 1}$ be iid real random variables such that

$$\forall t \in \mathbb{R} \quad P(X_1 > t) = \begin{cases} \frac{1}{1+t^2} & \text{if } t \ge 0, \\ 1 & \text{if } t < 0. \end{cases}$$

- **1.1** [1 Point] Show that, almost surely, we have $X_n > \sqrt{n}$ for infinitely many $n \ge 1$.
- **1.2** [3 Points] Show that $\sqrt{n} \min(X_1, \dots, X_n)$ converges in distribution as $n \to \infty$.
- 1.3 [2 Points] Show that

$$\frac{X_1 + \dots + X_n}{n} \xrightarrow[n \to \infty]{a.s.} \frac{\pi}{2}.$$

1.4 [2 Points] Show that $(X_1 + \cdots + X_n)^{1/2} \min(X_1, \dots, X_n)$ converges in distribution as $n \to \infty$.

Exercise 2

Let (X,Y) be a random vector taking values in \mathbb{R}^2 that has joint density given by

$$f(x,y) = \begin{cases} \frac{1}{4} [1 + xy(x^2 - y^2)] & \text{if } |x| \le 1 \text{ and } |y| \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

2.1 [2 Points] Show that both X and Y are uniform random variables in [-1,1].

2.2 [1 Point] Check that

$$\int_{-1}^{1} \int_{-1}^{1} e^{it(x+y)} xy(x^2 - y^2) \, dx dy = 0$$

for all $t \in \mathbb{R}$.

2.3 [2 Points] Show that

$$\forall t \in \mathbb{R} \quad \varphi_{X+Y}(t) = \varphi_X(t)\varphi_Y(t).$$

2.4 [2 Points] Are X and Y independent? Justify your answer.

Exercise 3

Let $(Z_n)_{n\geq 1}$ be iid random variables such that

$$P(Z_1 = 1) = P(Z_1 = -1) = 1/2.$$

Let $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $X_0 = 0$. For $n \geq 1$, let

$$\mathcal{F}_n = \sigma(Z_1, \dots, Z_n)$$
 and $X_n = Z_1 + \dots + Z_n$.

- **3.1** [2 Points] Show that (X_n) is a (\mathcal{F}_n) -martingale.
- **3.2** [2 Points] Show that $(X_n^2 n)$ is a (\mathcal{F}_n) -martingale.

Let $T: \Omega \to \mathbb{N}$ be a (\mathcal{F}_n) -stopping time.

3.3 [2 Points] Let t > 0. Prove that

$$\mathrm{E}\left(X_{|t^2|\wedge T}^2\right) \le \mathrm{E}(t^2 \wedge T).$$

3.4 [2 Points] Prove that

$$P\left(\sup_{n\geq 0}|X_{n\wedge T}|\geq t\right)\leq P\left(T\geq t^2\right)+P\left(\sup_{n\leq |t^2|}|X_{n\wedge T}|\geq t\right).$$

3.5 [2 Points] Use the previous two parts to deduce that

$$P\left(\sup_{n>0}|X_{n\wedge T}|\geq t\right)\leq P\left(\sqrt{T}\geq t\right)+E\left(\frac{T\wedge t^2}{t^2}\right).$$

3.6 [2 Points] Show that

$$\int_0^\infty \frac{\mathrm{E}(T \wedge t^2)}{t^2} \, dt = 2\mathrm{E}(\sqrt{T}).$$

3.7 [1 Point] Conclude that

$$E\left(\sup_{n\geq 0}|X_{n\wedge T}|\right)\leq 3E\left(\sqrt{T}\right).$$

3.8 [3 Points] Let $S = \min\{n \ge 0 : X_n = -1\}$. Show that

$$E(\sqrt{S}) = \infty.$$

Exercise 4

- **4.MC1** [3 Points] Let X, Y be two independent uniform random variable in [0, 1]. Write f_X and f_Y for the densities of X and Y, respectively. Which of the following are true?
 - (A) The random variable X + Y admits a density f_{X+Y} given by

$$\forall x \in \mathbb{R} \quad f_{X+Y}(x) = f_X(x)f_Y(x).$$

- (B) $E((X + Y)^2) = E(X^2) + E(Y^2)$
- (C) Var(X + Y) = 2Var(X)
- (D) For every $a, b \in \mathbb{R}$ we have E((X a)(X b)) = E(X a)E(X b).
- (E) There exists $a, b \in \mathbb{R}$ such that E((X a)(X b)) = E(X a)E(X b).
- **4.MC2** [3 Points] Let $(X_n)_{n\geq 1}$ be an iid sequence of $\mathcal{N}(0,1)$ random variables. Which of the following sequences converge in distribution to a $\mathcal{N}(0,1)$ random variable as $n\to\infty$?
 - (A) $\frac{X_1 + \dots + X_n}{\sqrt{n}}$
 - (B) $\frac{X_1 + \dots + X_n}{n}$
 - (C) $\frac{X_1^2 + \dots + X_n^2}{\sqrt{n}}$
 - (D) $\frac{2}{n} \sum_{k=1}^{n} \sqrt{k} X_k$
 - (E) $\frac{X_1^2 + \dots + X_n^2 n}{\sqrt{n}}$
- **4.MC3** [3 Points] Let X, Y, Z be iid $\mathcal{N}(0, 1)$ random variables. Which of the following are true?
 - (A) E(X + Y + Z|X) = X a.s.
 - (B) E(X + Y + Z|X + Y) = X + Y a.s.
 - (C) $E(X + Y + Z | \sigma(X, Y)) = X + Y \text{ a.s.}$
 - (D) $E(X^2 + Y^2 + Z^2|Z) = Z^2$ a.s.
 - (E) $E(X^2 + Y^2 + Z^2|Z) = Z^2 + 2$ a.s.

Results from lectures

A formula for E(X).

Let X be a non-negative real random variable. Then

$$E(X) = \int_0^\infty P(X \ge t) dt.$$

Doob's maximal inequality.

Let $(X_n)_{n\geq 0}$ be a sub-martingale. Then for every $n\geq 0$ and for every a>0, we have

$$P(\max_{0 \le k \le n} X_k \ge a) \le \frac{E(\max(X_n, 0))}{a}.$$