

# Exam Probability Theory

401-3601-00L

Last Name

First Name

Legi-Nr.

XX-000-000

Exam-No.

000

# Please do not turn the page yet!

Please take note of the information on the answer-booklet.



All random variables are defined on an a fixed implicit probability space  $(\Omega, \mathcal{F}, P)$ .

For a real random variable X, we write E(X) for its expectation, and  $\phi_X$  for its characteristic function, defined by

$$\forall t \in \mathbb{R} \quad \phi_X(t) = \mathcal{E}(e^{itX}).$$

 $\mathbb{N}$  denotes the set  $\{0, 1, 2, \ldots\}$  of non-negative integers. For every x > 0, we write  $\log(x)$  for the logarithm in base e (that is,  $\exp(\log(x)) = x$ ).

## Exercise 1

Let  $(X_n)_{n\geq 1}$  be independent real random variables such that for each  $n\geq 1,\, X_n$  has density given by

$$f_n(x) = \frac{n+1}{x^{n+2}} 1_{x>1}.$$

- **1.1** [1 Point] Check that for all  $n \geq 1$ ,  $f_n$  defines a density.
- **1.2** [2 Points] For  $n \geq 1$ , compute  $E(X_n)$ .

Exam-No.: 000 XX-XX-XX-000-000 Page 2 of 12



**1.3** [2 Points] Let  $\varepsilon > 0$ . Show that for all  $n \ge 1$ ,

$$P(|X_n - 1| > \varepsilon) = \frac{1}{(1 + \varepsilon)^{n+1}}.$$

- **1.4** [2 Points] Does  $(X_n)$  converge almost surely? Does  $(X_n)$  converge in probability? Justify your answers.
- **1.5** [1 Point] Does  $(X_n)$  converge in  $L^1$ ? Justify your answer.

Exam-No.: 000 XX-XX-XX-000-000 Page 3 of 12

6 February 2025



Let  $(Y_n)_{n\geq 1}$  be independent real random variables such that for each  $n\geq 1,\,Y_n$  has density given by

$$g_n(x) = \frac{1 + \log(n+1)}{x^{2 + \log(n+1)}} 1_{x>1}.$$

**1.6** [1 Point] Show that for all  $n \ge 1$  and  $a \ge 1$ ,

$$P(Y_n \ge a) = \frac{1}{a^{1 + \log(n+1)}}.$$

- **1.7** [1 Point] Show that  $Y_n \xrightarrow[n \to \infty]{P} 1$ .
- **1.8** [2 Points] Show that almost surely, we have  $Y_n \ge e$  for infinitely many  $n \ge 1$ .
- **1.9** [1 Point] Does  $(Y_n)$  converge almost surely as  $n \to \infty$ ?



**1.10** [2 Points] What is  $\liminf_{n\to\infty} Y_n$  almost surely?

**1.11** [2 Points] What is  $\limsup_{n\to\infty} Y_n$  almost surely?



#### Exercise 2

Let  $(X_{m,n})_{m,n\geq 1}$  be independent random variables such that

$$\forall m, n \ge 1 \quad P(X_{m,n} = 1) = 1 - P(X_{m,n} = 0) = \frac{1}{n}.$$

For  $n \geq 1$ , define

$$S_n = X_{1,n} + \dots + X_{n,n}.$$

- **2.1** [3 Points] Let  $\phi_{S_n}$  be the characteristic function of  $S_n$ . For  $t \in \mathbb{R}$ , compute  $\phi_{S_n}(t)$ .
- **2.2** [2 Points] Let  $Z \sim Poi(1)$ , that is,

$$\forall k \in \mathbb{N} \quad P(Z=k) = \frac{e^{-1}}{k!}.$$

Let  $\phi_Z$  be the characteristic function of Z. For  $t \in \mathbb{R}$ , compute  $\phi_Z(t)$ .



**2.3** [3 Points] Deduce that  $S_n \xrightarrow[n \to \infty]{(d)} Z$ .



## Exercise 3

Let  $(Z_n)_{n\geq 1}$  be iid random variables such that

$$P(Z_1 = 1) = P(Z_1 = -1) = 1/2.$$

Let 
$$\mathcal{F}_0 = \{\emptyset, \Omega\}$$
 and  $\mathcal{F}_n = \sigma(Z_1, \dots, Z_n)$  for  $n \geq 1$ . Let  $X_0 = 0$  and  $X_n = Z_1 + \dots + Z_n$  for  $n \geq 1$ .

- **3.1** [2 Points] Show that  $(X_n)_{n\geq 0}$  is a  $(\mathcal{F}_n)$ -martingale.
- **3.2** [2 Points] Show that  $(X_n^2 n)_{n \ge 0}$  is a  $(\mathcal{F}_n)$ -martingale.

6 February 2025



Let  $T: \Omega \to \mathbb{N} \cup \{+\infty\}$  be a stopping time.

3.3 [2 Points] Show that

$$\forall n \ge 0 \quad \mathrm{E}(X_{n \wedge T}^2) \le \mathrm{E}(T).$$

3.4 [2 Points] Deduce that

$$\forall n \ge 0 \quad \mathbb{E}\left(\sup_{n \ge 0} X_{n \wedge T}^2\right) \le 4\mathbb{E}(T).$$

**3.5** [2 Points] Assume that  $E(T) < \infty$ . Prove that  $E(X_T) = 0$ .



- **3.6** [2 Points] Let  $S = \min\{n \ge 1 : X_n = -1\}$  (by convention,  $\min \emptyset = +\infty$ ). Show that  $\mathrm{E}(S) = +\infty$ .
- **3.7** [2 Points] Let  $S' = \min\{n \ge 1 : X_n = 0\}$ . What is E(S')?



#### Exercise 4

In the following questions, mark all statements that are true (several statements can be true).

**4.MC1** [3 Points] Let  $(Z_n)_{n\geq 1}$  be iid random variables such that

$$P(Z_1 = 1) = P(Z_1 = -1) = 1/2.$$

Let  $X \sim \mathcal{N}(0,1)$  be independent of  $(Z_n)_{n\geq 1}$ . Which of the following is/are true?

(A) 
$$\xrightarrow[\sqrt{n}]{Z_1 + \dots + Z_n} \xrightarrow[n \to \infty]{(d)} X$$
.

(B) 
$$\xrightarrow{Z_1 + \dots + Z_n} \xrightarrow{L^1} X$$

(B) 
$$\frac{Z_1 + \dots + Z_n}{\sqrt{n}} \xrightarrow[n \to \infty]{L^1} X$$
.  
(C)  $\forall t \in \mathbb{R} \quad \phi_{\frac{Z_1 + \dots + Z_n}{n}}(t) \xrightarrow[n \to \infty]{} \phi_X(t)$ .

(D) 
$$\forall t \in \mathbb{R} \quad \left(\phi_{\frac{Z_1}{\sqrt{n}}}(t)\right)^n \xrightarrow[n \to \infty]{} \phi_X(t).$$

(E) 
$$\forall t \in \mathbb{R} \quad \phi_{\frac{Z_1 + \dots + Z_n}{\sqrt{n}}}(t) \xrightarrow[n \to \infty]{} \phi_X(t).$$

**4.MC2** [3 Points] Let  $(Z_n)_{n\geq 1}$  be iid random variables such that

$$P(Z_1 = 1) = P(Z_1 = -1) = 1/2.$$

Let  $X_0 = 1$  and for  $n \ge 0$ , let

$$X_{n+1} = \begin{cases} X_n + 1 & \text{if } Z_{n+1} = +1, \\ \lfloor X_n/2 \rfloor & \text{if } Z_{n+1} = -1, \end{cases}$$

where we write |x| for the integer part of x (that is, the greatest integer less than or equal to x). Let  $(\mathcal{F}_n)_{n\geq 1}$  be the filtration generated by  $(Z_n)_{n\geq 1}$ . Which of the following is/are true?

- (A)  $X_n$  is a  $(\mathcal{F}_n)$ -submartingale.
- (B)  $X_n$  is a  $(\mathcal{F}_n)$ -supermartingale.
- (C)  $X_n$  is a  $(\mathcal{F}_n)$ -martingale.
- (D)  $\limsup_{n\to\infty} X_n = +\infty$  almost surely.
- (E)  $X_n \xrightarrow[n \to \infty]{a.s.} 0$ .



**4.MC3** [3 Points] Let  $(X_n)_{n\geq 1}$  be iid  $\mathcal{U}[0,1]$  random variables. Which of the following is/are true?

- (A)  $\lim_{n\to\infty} (X_1^2 + \dots + X_n^2)/n > 1/2$  almost surely.
- (B)  $(X_1 + \cdots + X_n)/n \xrightarrow[n \to \infty]{a.s.} 1/2.$
- (C)  $X_1 \cdots X_n \xrightarrow[n \to \infty]{a.s.} 1/2.$
- (D) There exists  $r \in \mathbb{R}$  such that  $(X_1 \cdots X_n)^{1/n} \xrightarrow[n \to \infty]{a.s.} r$ .
- (E)  $\left( (X_1 \cdots X_n)^{1/n^2} \right)_{n \ge 1}$  does not converge a.s. as  $n \to \infty$ .

Exam-No.: 000 XX-XX-XX-000-000 Page 12 of 12