

D-MATH Exam Quantitative Risk Management 401-3629-00S

Please do not turn the page yet!

Problems

1. Risk & risk measures

(a) **[3 Points]**

Let X be a random variable with a cumulative distribution function

$$F(x) = \begin{cases} 0 & \text{if } x < 1\\ 1 - x^{-\theta} & \text{if } x \ge 1 \end{cases}$$

for a parameter $\theta > 1$. Calculate VaR_{α} (X) and ES_{α} (X) for $\alpha \in (0, 1)$.

(b) **[3 Points]**

Let X_1, X_2 be independent and identically distributed random variables taking the values 100 with probability $p \in (0, 1)$ and 0 with probability 1 - p. For which $\alpha \in (0, 1)$ does one have $\operatorname{VaR}_{\alpha}(X_1 + X_2) > \operatorname{VaR}_{\alpha}(X_1) + \operatorname{VaR}_{\alpha}(X_2)$? Explain your answer.

(c) **[3 Points]**

Consider two stocks, A and B, with current values 500 and 200, respectively. The monthly log-returns of the two stocks in % over the last 5 months are given in the following table:

lag k	5	4	3	2	1
log-return of A at lag k in $\%$	10	-5	-3	15	4
log-return of B at lag k in $\%$	12	-10	1	10	2

Use historical simulation to estimate VaR_{0.8} of the linearized loss L^{Δ} of a portfolio consisting of one share of A and two shares of B over the next month.

(d) **[2 Points]**

Let X and Y be two random variables on the same probability space such that

 $X \sim \text{Log-Norm}(\mu_1, \sigma_1^2)$ and $Y \sim \text{Log-Norm}(\mu_2, \sigma_2^2)$.

Is it true that $XY \sim \text{Log-Norm}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$? Explain your answer.

2. Multivariate models

Suppose the losses L_1, \ldots, L_d of d financial assets are described by the factor model

$$L_i = \rho_i Z_0 + \sqrt{1 - \rho_i^2} Z_i, \quad i = 1, \dots, d_i$$

where Z_0, Z_1, \ldots, Z_d are i.i.d. $N(0, \sigma^2)$ -distributed random variables and $\rho_i \in (0, 1)$.

(a) **[2 Points]**

Determine the distribution of the random vector $L = (L_1, \ldots, L_d)$.

(b) [2 Points] Calculate VaR_{α} (L_i), i = 1, ..., d. [9 Points]

[10 Points]

(c) **[2 Points]**

Calculate VaR_{α} $\left(\frac{1}{d}\sum_{i=1}^{d}L_{i}\right)$.

(d) **[3 Points]**

Does investing capital equally in the d financial assets decrease the portfolio's VaR compared to investing the whole capital in one asset? Explain your answer using the results from b) and c).

3. Extreme value theory

Let X be a random variable with a cumulative distribution function

$$F(x) = \begin{cases} \frac{3x+1}{3x+2} & \text{if } x \ge 0\\ 0 & \text{if } x < 0. \end{cases}$$

(a) **[1 Point]**

Does X have a density? If yes, can you derive it?

(b) **[1 Point]**

Find all $k \in \mathbb{N} = \{1, 2, \dots\}$ such that $\mathbb{E}[|X|^k] < \infty$.

(c) **[3 Points]**

Does F belong to $MDA(H_{\xi})$ for a standard generalized extreme value distribution H_{ξ} ? If yes, what is ξ and what are the normalizing sequences?

(d) [2 Points]

Calculate the excess distribution function $F_u(x) = \mathbb{P}[X - u \leq x \mid X > u], x \geq 0.$

(e) **[3 Points]**

Does there exist a parameter $\xi \in \mathbb{R}$ and a function β such that

$$\lim_{u \to \infty} \sup_{x>0} |F_u(x) - G_{\xi,\beta(u)}(x)| = 0,$$

where $G_{\xi,\beta}$ denotes the cumulative distribution function of a generalized Pareto distribution? If yes, for which ξ and β does this hold?

4. Copulas & dependence

(a) **[2 Points]**

Compute the upper tail dependence coefficient λ_u of the two-dimensional copula

$$C(u,v) = 1 - \left((1-u)^{\theta} + (1-v)^{\theta} - (1-u)^{\theta} (1-v)^{\theta} \right)^{1/\theta}, \quad u,v \in (0,1),$$

for $\theta \in [1, \infty)$.

(b) **[3 Points]**

Let (X, Y) be a two-dimensional random vector with Exp(1)-marginals and copula C(u, v) given in a). Compute the cumulative distribution function of (X, Y).

[10 Points]

(c) **[5 Points]**

Let (X, Y) be a two-dimensional random vector with a cumulative distribution function

$$F(x,y) = \frac{x^2}{\sqrt{x^4(1+e^{-y})^2+1+2x^2}}$$

defined on $\mathbb{R}^+ \times \mathbb{R}$. Compute the marginal distributions and the copula of (X, Y).

5. Practical questions

[10 Points]

(a) **[3 Points]**

Describe how one can test univariate distributions with graphical tests.

(b) **[3 Points]**

Describe what a p-factor model is.

(c) [4 Points]

Name advantages and disadvantages of the multivariate normal distribution as a model for financial log-returns.