

Exam Quantitative Risk Management

401-3629-00L

Last Name

First Name

Legi-Nr.

XX-000-000

Exam-No.
000

Please do not turn the page yet!

Please take note of the information on the answer-booklet.

Question 1

- (a) A friend of yours tosses a fair coin and lets you choose between two bets A and B. In bet A you win 10 CHF if *head* shows up, and you loose 10 CHF if *tail* shows up. In bet B you win 30 CHF if *head* shows up, and you loose 10 CHF if *tail* shows up.
 - (i) [2 Points] Quantify the risks of the two bets in terms of Value-at-Risk at level 0.9, VaR_{0.9}.
 - (ii) [2 Points] Quantify the risks of the two bets in terms of standard deviation, sd.
 - (iii) [1 Point] Rank the risks of the two bets in terms of a coherent risk measure ρ .
- (b) Suppose you own a portfolio consisting of one share of stock A with current value $S_t^A = 700$ and 3 shares of stock B with current value $S_t^B = 100$ per share (both in CHF). The monthly log-returns of the stocks in % over the last 4 months are given in the following table:

Lag k	3	2	1	0
log-return of stock A at lag k	-2.0	1.0	-1.0	0.0
log-return of stock B at lag k	1.0	1.5	-2.0	-1.0

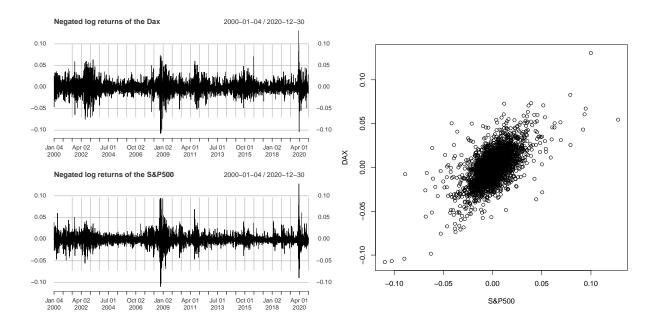
(i) [1 Point] Express the loss L_{t+1} of the portfolio over the next month as a function of the risk factor changes X_{t+1}^A and X_{t+1}^B given by

$$X_{t+1}^A = \log(S_{t+1}^A) - \log(S_t^A)$$
 and $X_{t+1}^B = \log(S_{t+1}^B) - \log(S_t^B)$.

- (ii) [1 Point] Express the linearized loss L_{t+1}^{Δ} of the portfolio as a function of X_{t+1}^A and X_{t+1}^B .
- (iii) [4 Points] Use historical simulation to estimate $VaR_{0.6}(L_{t+1}^{\Delta})$, $ES_{0.6}(L_{t+1}^{\Delta})$ and $AVaR_{0.6}(L_{t+1}^{\Delta})$.

Question 2

(a) [4 Points] The following pictures show 5195 daily negative log-returns of the S&P500 and Dax from the start of 2000 to the end of 2020 (left column) along with a scatter plot of these negative log-returns (right column).



Describe four stylized facts of univariate/multivariate daily financial log-return series and relate them to the pictures.

- (b) [2 Points] Mention a stylized fact of univariate financial log-return time series GARCH(1,1)-processes can replicate well, and explain briefly how they do so.
- (c) [4 Points] Discuss if the following statement is true or false: "If the random variables X_1 and X_2 both follow a standard normal distribution with known correlation ρ , then it is possible to calculate $\text{VaR}_{\alpha}(v_1X_1 + v_2X_2)$ for any $\alpha \in (0,1)$ and for any $v_1, v_2 \in \mathbb{R}$."

August 18, 2023

Question 3

Let X be a random random variable with cumulative distribution function

$$F(x) = \frac{e^x}{e^x + 1}$$
, $x \in \mathbb{R}$.

- (a) [1 Point] Does X have a density? If no, explain why it cannot have a density. If yes, derive the density.
- (b) [2 Points] Find all $k \in \mathbb{N} = \{1, 2, ...\}$ such that $\mathbb{E}[|X|^k] < \infty$, providing an explanation.
- (c) [4 Points] Does F belong to the maximum domain of attraction MDA(H_{ξ}) for a standard GEV distribution H_{ξ} ? If yes, what is ξ and what are the normalizing sequences?

Hint: You may use that for any sequence $(w_n)_{n\in\mathbb{N}}$ converging to $w\in\mathbb{R}$ it holds that

$$\lim_{n \to \infty} \left(1 + \frac{w_n}{n} \right)^n = \exp(w).$$

- (d) [2 Points] Calculate the excess distribution function $F_u(x) = \mathbb{P}[X u \le x \mid X > u], x \ge 0.$
- (e) [4 Points] Does there exist a parameter $\xi \in \mathbb{R}$ and a function $\beta \colon \mathbb{R} \to (0, \infty)$ such that

$$\lim_{u \to \infty} \sup_{x > 0} |F_u(x) - G_{\xi, \beta(u)}(x)| = 0,$$

where $G_{\xi,\beta}$ denotes the cumulative distribution function of a GPD? If yes, for which ξ and β does this hold?

Question 4

Let (X_1, X_2) be a two-dimensional random vector with cumulative distribution function

$$F(x_1, x_2) = \begin{cases} \exp\left(-\left(x_1^{-\theta} + x_2^{-\theta}\right)^{1/\theta}\right), & \text{if } x_1 > 0 \text{ and } x_2 > 0, \\ 0, & \text{else} \end{cases}$$

for a parameter $\theta \in [1, \infty)$.

- (a) [2 Points] Derive the two marginal cumulative distribution functions F_1 and F_2 .
- (b) [2 Points] Derive the copula of F.
- (c) (i) [2 Points] Assume $\theta = 2$. Compute the probability that X_1 and X_2 both exceed their $VaR_{0.95}$.

Hint: You may use that
$$\exp\left(-\left((-\log 0.95)^2 + (-\log 0.95)^2\right)^{1/2}\right) \approx 0.93$$
.

(ii) [2 Points] Show that this probability is approximately 12 times larger than the probability of the same event if X_1 and X_2 were independent.

Exam-No.: 000 XX-XX-XX-000-000 Page 5 of 6

August 18, 2023

Question 5

- (a) [2 Points] Describe the notions of risk and uncertainty, clearly pointing out the difference between them.
- (b) [2 Points] Where would you place financial markets in the spectrum between risk and uncertainty? Briefly justify your answer.
- (c) [4 Points] Let $L^2(\mathbb{P})$ be the space of all square-integrable random variables on a given probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and consider the standard deviation mapping sd: $L^2(\mathbb{P}) \to \mathbb{R}$ given by

$$\operatorname{sd}(X) = \sqrt{\mathbb{E}[(X - \mathbb{E}[X])^2]}, \quad X \in L^2(\mathbb{P}).$$

Which properties of a coherent risk measure does sd have? Please, justify your answers.