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Problems and suggested solution

Question 1
(a) [4 Points] Consider a random variable X with distribution function F' given by

0 <0
F(z) = 05 ; 0<z<3
1— % >3

Compute VaR,(X), AVaR,(X) and ES,(X) at level a = 0.8.

Solution:

It holds that

0, u € (0,0.5]
VaR,(X) =143, u € (0.5,8/9]
=, w€(8/9,1).
Hence,
VaRols(X) = 3.

1 1
AVaRos(X) = -0 /0 VaR,(X) du

= 5{3(8/9 —0.8) + /;9

A 19 1 .
—4/3 5/ -
/3+ 0o Vu "

= 4/3+5[2v) "
—4/3+5-2/3
—14/3.

du]

1—u

Finally,

ESps(X) =E[X | X > VaRgs(X)]
1
1-0.5

- 2[3(8/9 —0.5) + /;9 \/11__u du}
—7/3+2-2/3

=11/3.

1
/ VaR,(X) du
0.5

(b) For a random variable L with distribution function F, we can define

VaR4(L) :=sup{z € R: Fp(z) <1} € RU {oo}.
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That means VaR;(L) corresponds to the right endpoint of F,.

In this exercise, we are going to show that VaR; is a coherent risk measure on the space £ of
essentially bounded random variables, that is, £ = {L | VaR;(L) < oo}.

(i) [2 Points] First show that for any random variable L € L it holds that

VaRi(L) = sup AVaR,(L). (1)

a€(0,1)

Hint: You may use without proof that for any L € L, the quantile function (0,1] > a —
VaR, (L) is left-continuous and increasing.

Solution:

For any o € (0,1) and any random variable L € £ it holds that

1
11—«

1
VaR, (L) < AVaR,(L) = / VaR, (L) du < VaRy (L).

Due to the hint, it holds that VaR,(L) — VaRi(L) as @ — 1. Hence, due to the above
inequality, also AVaR, (L) — VaR,(L). Since AVaR, (L) is increasing in «, (1) holds.

(ii) [4 Points] Use the representation (1) to prove that VaR; is a coherent risk measure on L.
Hint: You may use any properties of AVaR,, established in the lecture.
Solution:

Since VaR; is a supremum of coherent risk measures, it is itself coherent.
Indeed, let’s consider all properties, assuming that L, L, Ly € L:
Monotonicity: Let L; < Ly almost surely. Then AVaR,(L;) < AVaR,(L,). Hence,
with (1)
VaRl(Ll) S VaR1<L2)

Translation property: For a random variable L and m € R it holds that AVaR, (L +
m) = AVaR, (L) + m. Hence,

VaRi(L +m) = sup AVaR.(L+m)= sup AVaR,(L)+ m = VaR;(L) + m.

ae(0,1) a€g(0,1)

Subadditivity: Let L, L, be random variables. Since AVaR,, is subadditive, it holds
that

VaRl(Ll -+ LQ) = Ssup AV&ROC(Ll + LQ)

a€e(0,1)

< sup AVaR,(L;)+ AVaR,(Ls)

a€e(0,1)
< sup AVaR,(Li)+ sup AVaR,(L»)
ae(0,1) ae(0,1)

= VaR1 (Ll) + VaRl(Lg)

Positive homogeneity: Let L be a random variable and A > 0. Since AVaR,, is posi-
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tive homogeneous, it holds that

VaRy(AL) = sup AVaR,(AL) = sup AAVaR,(L) = AVaR,(L).

ae(0,1) a€e(0,1)

(iii) [1 Point] Briefly discuss the adequacy of VaR; as a risk measure in quantitative risk
management and regulation.

Solution:

(The coherence is a desirable property.)

However, in QRM, most loss distributions of interest are heavy tailed. In particular,
that means that VaR, is infinite for those distributions. Hence, this risk measure is not
very informative, since it cannot not distinguish well between different distributions.

e The above point can also be formulated differently: The space L is too restrictive to be
considered relevant in QRM.

(Moreover, even for bounded random variables, VaR; is very conservative.)
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Question 2

(a) (i) [1 Point] Provide the definition of an ARCH(p) process.
(ii) [2 Points] Is an ARCH(p) process a white noise process? Justify your answer.
(iii) [1 Point] Is an ARCH(p) process a strict white noise process? Justify your answer.

(iv) [1 Point] Discuss the adequacy of a strict white noise process to model financial log-returns,
referring to the relevant stylized facts of financial log-returns.

Solution:

(i) (Xi)iez is an ARCH(p) process if it satisfies
Xt = O-tZt

p
2 2
0, = (g + Z akXt_ky
k=1

where (Z;)ez is a strict white noise process with mean 0, variance 1, Z; is independent
from Fiy = 0(Xy—1, Xi9,...)and a9 > 0, ap > 0, k= 1,...,p.
Moreover, to make it stationary, we need to impose that

p
Z o < 1.
k=1

(ii) We need to check two things: (1) E[X,] = 0, and (2) Cov(X;, X¢1p) = 0 for all t € Z,
h # 0.
Define F;_1 = 0(X;_1, Xy_9,...). Then

E[X:] = E[E[X{|Fi1]] = E[o; E[Z,| Fi1]] =0

For the covariance, suppose without loss of generality that h > 0. Then
COV(Xt7 Xt+h> = E[XtXt+h] = E[E[UtZtUtJthtJrh|-Ft+h71“
= E[UtZtUt+h E[ZtJrh’ftJrhle =0

=0

(iii) For a strict white noise process, (X;);cz would need to be iid. However, it holds that

p
E[X7|Fia] = 0f = ap + D o Xy
k=1

That means X} depends on F;_1 if @y > 0 or ...or o, > 0. So in general, an ARCH(p)
process is not a strict white noise process.

On the other hand, for oy = -+ = a,, = 0 it trivially becomes strictly stationary since then
Xt = Q{[l)/QZt.
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(iv) One of the most important stylized facts of financial log-returns are their volatility clu-
sters and — more generally — the time varying volatility. This cannot be replicated by a

strict white noise process. Hence, such a process cannot be recommended to model financial
log-returns.

More generally, a strict white noise process cannot satisfy properties (U1), (U2), (U4) and
(U5).

(b) Suppose you have a portfolio with d assets X1, ..., X4, which all have variance 1.

(i) [1 Point] What does it mean that the vector (X7, ..., X;) has an exchangeable distribution?
Solution:

It means that for any permutation 7: {1,...,d} — {1,...,d} the distribution of (X7, ..., Xy)
coincides with the distribution of (Xzqy, ..., Xz@))-

(ii) [1 Point] Show that exchangeability implies that all pairs (X, X;), 1 <1i < j < d, have the
same Pearson correlation p € [—1,1].
Solution:

Let p := cov(Xy, X3). The exchangeability implies that for any permutation 7: {1,...,d} —
{1,...,d} we have

(d)
(X1, Xo) = (Xrq), Xr(2)-

Therefore,
p = corr(Xr), Xr())-

Moreover, for any i < j there is a permutation 7 such that (7(1),7(2)) = (i, 7).

(iii) [2 Points] Show that necessarily p > —1/(d — 1).
Solution:

Since the variances are 1, the correlation matrix coincides with the covariance matrix. .

We can calculate the variance of X; + --- + X; and use that the variance is non-negative.

d d
0 < Var(X;+Xo+--- 4+ Xg) = Y Cov(X;, X;) = > corr(X;, X;) =d(1+ p(d—1))

ij=1 ij=1

This is equivalent to

(iv) [3 Points] Show that for p = —1/(d — 1), the distribution of (X, ..., X,) cannot have a
joint density.

Hint: Start by calculating the variance Var(X; + X + -+ + Xj).

Solution:
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If p=—1/(d—1), then

d
Var(X; + Xo+ -+ Xy) = Z Cov(X;, Xj) = d(1 + p(d — 1)) = 0.

ij=1
Hence, X; + X5 + - -+ + Xy must be constant almost surely. Therefore, (X, ..., Xy) only

attains values on a (d — 1)-dimensional sub-vectorspace of R<.

Since any such subspace has d-dimensional Lebesgue measure 0, the distribution cannot
have a Lebesgue density.
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Question 3

(a) [3 Points] Let X;, Xs,. .. beiid random variables with distribution F'. Let M,, = max{Xi,..., X,,}
and suppose that zp =sup{z € R: F(z) < 1} < c0.

Show that M,, converges in distribution to xp.

Solution:

We need to show that the distribution function Fy;, of M, converges to the step function

G(ZL’) _ {O, T < ITp

1, z>zxp

for all its continuity points of GG, that is, for all x € R, x # xp.
For any x € R it holds that

Fuy,(z) =P[X; <zand Xy <z,..., and X,, <z] = (F(m))n
If + < xp, then F(z) € [0,1). Therefore, it holds that
Jm (F)" =0

On the other hand for = > xf it holds that F'(z) = 1. Hence,

lim (F(x))n = 1.

n—o0

(b) Let F be the distribution function of a uniform distribution on [0, 1].

(i) [2 Points] Does F' belong to the maximum domain of attraction, MDA (H¢), of a standard
GEV distribution H,? If yes, determine the parameter &.

Solution:

We may use a characterisation result from the lecture for £ < 0: F' € MDA(H) if and only
if 1p < 00 and 1 — F(xp — 1/2) = 2'/¢L(z) where L is a slowly varying function.
It holds that zr = 1 < oo and

1—-Flrp—1/2)=1-(1~-1/2) =2 .

Since any constant is a slowly varying function, it holds that F' € MDA (Hg) for £ = —1.

(ii) [1 Point] Calculate the excess distribution function F,(x) = P[X —u < z | X > ul,
0<u<zxp,z€l0,xp—u).
Solution:
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For 0 <z <xp, u<zp we get

Plu< X <z + uj x
PX—-u<z|X>u= PIX > =1

(iii) [2 Points] Does there exist a parameter £ € R and a function : R — (0, c0) such that

lim sup |F,(z) — Ge g (@) =0,

uTTF >0

where G¢ g denotes the cumulative distribution function of a GPD? If yes, for which £ and
does this hold?

Solution:

Pickands—Balkema—de Haan Theorem implies that there exists a measurable function
f: R — (0,00) such that

lim sup | %, (2) — Ge g ()] = 0, (2)
utZr >0
if and only if F' € MDA (H).

We have shown in (¢) that F € MDA(H_;), thus (1) holds for £ = —1 and for some
function S(u).

Moreover, G_; 3(z) = =/B. Hence, the assertion holds for f(u) =1 — u.
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Question 4

(a) Consider the random vector (Z,|Z|), where Z follows a standard normal distribution.

(i) [2 Points] Sketch a scatterplot of a random sample from the distribution of (7, |Z]) and also

a scatterplot of a random sample from the underlying copula of (Z,|Z]).

Solution:

A scatterplot of a random sample from (Z,|Z|) has the following shape:

(The qualitative V-shape of the graph is important here! Of course, it needs to be symmetric
around the line z = 0 and the slopes need to be +1.)

A scatterplot of a random sample from the copula of (Z,|Z]) has the following form:

1.0

0.6
1

u2

0.4

0.0
L

0.0 0.2 0.4 0.6 0.8 1.0

(It is important that the qualitative V-shape does not change, but the symmetry axis must
be correct ay u; = 0.5. Moreover, the slopes need to be +2.)
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(ii) [2 Points] Compute the Pearson correlation of Z and |Z|. Are Z and |Z| independent?
Provide an argument for your claim.

Solution:

Since Z 2 —Z it holds that (Z,|Z|) € (~Z,| — Z). Hence,
Cov(Z,|Z|) = Cov(—Z,| — Z|) = Cov(—2Z, |Z]|) = —Cov(Z, |Z]).

Hence, Cov(Z,|Z|) = 0.
Z and |Z| are not independent, even though they are uncorrelated. One possible argument

is that the copula of (Z,|Z]) does not correspond to the independence copula, as can be
seen from (a).

(iii) [1 Point] How would the scatterplot of a random sample from the copula change if we
considered (Z, Z%)? Provide a brief argument for your claim.

Solution:

The scatterplot would not change. The reason is that (Z,|Z]|) and (Z, Z?) have the same
copula. Indeed, we only apply a strictly increasing transformation to the second component.
(The map x +— 22 is strictly increasing on [0, 00).) And copulas are invariant under strictly
increasing transformations of each component.

(b) Suppose you have iid observations (X1,Y7),...,(X,,Y,) of a two-dimensional random vector

(X,Y).

(i) [1 Point] Provide a formula for the sample version of Kendall’s tau, r,(n).
Solution:

mmﬁ(gq > sign((X; - X,)(% — V)

1<i<j<n

=T sten((X - X)) - Y))

n(n—1) 7,

(ii) [1 Point] Suppose that n =4 and your random sample is

{(_1’3)a(070)7(272)’(3’1)}' (3)

Compute r,(n) on this sample.

Solution:
1 n n
ro(n) = sign((X: — X;)(Y; - ¥;)
n(n—l);:lj%]:?éZ ( / j)
1
= —(— 1—-1-1
4‘3( 3+ )
__1
3
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(iii) [2 Points] Suppose you have a new data point (X, 41, Ys41). Describe a condition under
which this new data point influences the sample version of Kendall’s tau maximally. Provide
an appropriate example for the concrete sample in (3).

Solution:

The new data point (X1, Y,+1) must be either concordant with all data points
(X1,Y1),...,(X,,Y,) or discordant with all data points (X1,Y7),..., (X,, Ya).

Equivalently, for an equivalent characterisation of concordance with all data points,
(X1,Y1),...,(Xn,Ys), consider the componentwise order-statistics X1y < -+ < X,y and
Y < -+ <Y,). Then simultaneous concordance can be expressed as

(X,LH > X(uy and Yyp; > Y(n)> or (XM1 < Xo and Yoy, < Y(l)).
On the other hand, simultaneous discordance can be expressed as
(Xn+1 < X(l) and Yn+1 > YV(")) or (Xn+1 > X(n) and Yn+1 < }/(1)>

Possible appropriate examples are: For concordance (5,5) or (—2,—2). For discordance
(—2,5) or (5,—2).

(iv) [1 Point] What is the maximal influence of a new data point (X1, Y,+1) on the sample

version of Kendall’s tau? That is, what is an upper bound for the difference
rr(n) —re(n+1)|,

which holds for any data set (X1,Y1), ..., (Xn, Yn), (Xnt1, Yoi1)?

Decide whether it is either 4 1

— o —.

n+1 (n+1)2

Write down the solution on your submission sheet (answers on this sheet will not be counted).
You do not need to provide an explanation.

or

Solution:

4
n+1

The derivation is as follows (not necessary to get the point!): We can write

ro(n) = (1)2 ,_ilsign(m - X)) - ).
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Hence, we have

i=1

r(n 1) = (1) [(g) () + 3 sign (X, — Xo) (Y — Vi)

rr(n)+ zn: sign((Xi — X)) (Y, — Yn+1))

=1

B (n —1—2 )n {n(n —

n

n—1 2 n
M o 1)n;s1gn(< ) )

This yields

n—1 2 - .
vt G (6 X0 Yo

=1

r-(n+1) —r-(n)] =

r(n) [

2 2 n_

= ‘ — . 17'7-<n) + m ;&gn(()(i - Xn+1)<}/; - Yn+1))‘

2 11X
T+ ‘n ;sgn((Xi — Xns1)(Yi — Yn+1)) —7,(7)

<2

4
< )
“n+1

(v) [1 Point] Compare and possibly contrast your previous result to Pearson’s correlation coef-
ficient.

Solution:

In contrast to Kendall’s tau, a new data point for Pearson’s correlation coefficient can
change the empirical correlation coefficient almost arbitrarily. That is, no matter what the
correlation on the existing sample (X1,Y1),..., (X,,Y,) is, the correlation on
(X1,Y7), ..., (X, Ya), (Xus1, Yoy1) can be any number in the interval (—1,1).

(Hence, the correct answer for Pearson’s correlation coefficient is 2.)
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Question 5

In this exercise, any scoring function S(x,y), z,y € R, has the interpretation that x € R is a forecast

and y € R an observation.
(a) [1 Point] In a comparative backtest you consider VaRg gs-forecasts from two different models,
M1 and M2. You compute average scores on a validation window for the following scoring functions:
Sl<x7y) = |13 - y|
Sa(@,y) = (z — y)*
S3(z,y) = (Lyy<ay — 0.95)(z — y)

The results are summarized in the following table.

| M1 M2
Sy 388 3.23
Sy | 749 6.91
Sy | 2.54 3.02

Which model would you prefer and why?

Solution:
The model M1 is preferable. We should evaluate forecasts using strictly consistent scoring
functions. Only S5 is strictly consistent for VaRg 5. And a smaller average score indicates a

better forecast performance.

(b) [1 Point] Why is it important to evaluate forecasts for a distribution-based risk measure using
a strictly consistent scoring function for this risk measure?

Solution:
This is important because strictly consistent scores incentivize truthful forecasting. That is,
a correctly specified forecast achieves a smaller expected score than any other forecast.

(c) [2 Points] Show that for any strictly convex function ¢: R — R with strictly positive second

derivative, the score
S(x,y) = —o(x) + ¢(x)(x —y), x,y€R,

is strictly consistent for the mean functional on the class of distributions with a finite mean.

Solution:
For any distribution F’ with finite mean and any forecast z € R, we can compute the expected

score B
S(x, F) == Ey.p[S(z,Y)] = —=¢(z) + ¢'(z)(z — Ey~p[Y]).
We need to show that S(z, F) is strictly minimized for 2 = Eyp[Y].

The first order condition is

5-S(@, F) = ¢"(z)(z = Ey~p[V]) = 0.
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Since ¢”(z) > 0 this condition holds if and only if z = Ey.p[Y].

Moreover, since ¢”(x) > 0, we have

_ Ey.rlY
QS(.%,F) < 0, T < by F[ ]
Ox >0, z>Ey r[Y].

This yields that S(z, F) has a strict global minimum at = Ey.p[Y].

(d) [4 Points] Consider an AR(1) process (Y;):en of the form
Yo=0 and Y, =60Y,_1+u, t>1,

where |0 < 1 and E[u; | Y;—1] = 0.
Two competing forecasts are available, X; = 0 and X; = 0Y;_1, where ¢ > 1.

If S: R xR — R is a strictly consistent scoring function for the mean functional, is it possible to

establish an inequality between the expected scores E[S(X%, Y;)] and E[S(X/,Y;)]? Explain your
answer.

Hint: Start by computing E[Y;] and E[Y; | Yi_1].

Solution:

It holds that
X, = E[Y]
X! =EY;| Y]

That means both forecasts are calibrated mean forecasts. However, strictly consistent scoring
functions prefer the more informative forecast, which is X;.

Hence,

E[S(X;,Y))] < E[S(X., Vi)

Page 14 of 14



