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Problems and suggested solution
Question 1

(a) [4 Points] Consider a random variable X with distribution function F given by

F (x) =


0 ; x < 0
0.5 ; 0 ≤ x < 3
1− 1

x2 ; x ≥ 3.

Compute VaRα(X), AVaRα(X) and ESα(X) at level α = 0.8.
Solution:

It holds that

VaRu(X) =


0, u ∈ (0, 0.5]
3, u ∈ (0.5, 8/9]

1√
1−u , u ∈ (8/9, 1).

Hence,
VaR0.8(X) = 3.

AVaR0.8(X) = 1
1− 0.8

∫ 1

0.8
VaRu(X) du

= 5
[
3(8/9− 0.8) +

∫ 1

8/9

1√
1− u

du
]

= 4/3 + 5
∫ 1/9

0

1√
u

du

= 4/3 + 5
[
2
√
u
]1/9

0

= 4/3 + 5 · 2/3
= 14/3.

Finally,

ES0.8(X) = E[X |X ≥ VaR0.8(X)]

= 1
1− 0.5

∫ 1

0.5
VaRu(X) du

= 2
[
3(8/9− 0.5) +

∫ 1

8/9

1√
1− u

du
]

= 7/3 + 2 · 2/3
= 11/3.

(b) For a random variable L with distribution function FL, we can define
VaR1(L) := sup{x ∈ R : FL(x) < 1} ∈ R ∪ {∞}.
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That means VaR1(L) corresponds to the right endpoint of FL.
In this exercise, we are going to show that VaR1 is a coherent risk measure on the space L of
essentially bounded random variables, that is, L = {L | VaR1(L) <∞}.

(i) [2 Points] First show that for any random variable L ∈ L it holds that

VaR1(L) = sup
α∈(0,1)

AVaRα(L). (1)

Hint: You may use without proof that for any L ∈ L, the quantile function (0, 1] 3 α →
VaRα(L) is left-continuous and increasing.
Solution:

For any α ∈ (0, 1) and any random variable L ∈ L it holds that

VaRα(L) ≤ AVaRα(L) = 1
1− α

∫ 1

α
VaRu(L) du ≤ VaR1(L).

Due to the hint, it holds that VaRα(L) → VaR1(L) as α → 1. Hence, due to the above
inequality, also AVaRα(L)→ VaR1(L). Since AVaRα(L) is increasing in α, (1) holds.

(ii) [4 Points] Use the representation (1) to prove that VaR1 is a coherent risk measure on L.
Hint: You may use any properties of AVaRα established in the lecture.
Solution:

Since VaR1 is a supremum of coherent risk measures, it is itself coherent.
Indeed, let’s consider all properties, assuming that L,L1, L2 ∈ L:

Monotonicity: Let L1 ≤ L2 almost surely. Then AVaRα(L1) ≤ AVaRα(L2). Hence,
with (1)

VaR1(L1) ≤ VaR1(L2)

Translation property: For a random variable L and m ∈ R it holds that AVaRα(L+
m) = AVaRα(L) +m. Hence,

VaR1(L+m) = sup
α∈(0,1)

AVaRα(L+m) = sup
α∈(0,1)

AVaRα(L) +m = VaR1(L) +m.

Subadditivity: Let L1, L2 be random variables. Since AVaRα is subadditive, it holds
that

VaR1(L1 + L2) = sup
α∈(0,1)

AVaRα(L1 + L2)

≤ sup
α∈(0,1)

AVaRα(L1) + AVaRα(L2)

≤ sup
α∈(0,1)

AVaRα(L1) + sup
α∈(0,1)

AVaRα(L2)

= VaR1(L1) + VaR1(L2)

Positive homogeneity: Let L be a random variable and λ > 0. Since AVaRα is posi-
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tive homogeneous, it holds that

VaR1(λL) = sup
α∈(0,1)

AVaRα(λL) = sup
α∈(0,1)

λAVaRα(L) = λVaR1(L).

(iii) [1 Point] Briefly discuss the adequacy of VaR1 as a risk measure in quantitative risk
management and regulation.
Solution:

• (The coherence is a desirable property.)
• However, in QRM, most loss distributions of interest are heavy tailed. In particular,

that means that VaR1 is infinite for those distributions. Hence, this risk measure is not
very informative, since it cannot not distinguish well between different distributions.
• The above point can also be formulated differently: The space L is too restrictive to be

considered relevant in QRM.
• (Moreover, even for bounded random variables, VaR1 is very conservative.)
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Question 2

(a) (i) [1 Point] Provide the definition of an ARCH(p) process.
(ii) [2 Points] Is an ARCH(p) process a white noise process? Justify your answer.
(iii) [1 Point] Is an ARCH(p) process a strict white noise process? Justify your answer.
(iv) [1 Point] Discuss the adequacy of a strict white noise process to model financial log-returns,

referring to the relevant stylized facts of financial log-returns.
Solution:

(i) (Xt)t∈Z is an ARCH(p) process if it satisfies

Xt = σtZt

σ2
t = α0 +

p∑
k=1

αkX
2
t−k,

where (Zt)t∈Z is a strict white noise process with mean 0, variance 1, Zt is independent
from Ft−1 = σ(Xt−1, Xt−2, . . .) and α0 > 0, αk ≥ 0, k = 1, . . . , p.
Moreover, to make it stationary, we need to impose that

p∑
k=1

αk < 1.

(ii) We need to check two things: (1) E[Xt] = 0, and (2) Cov(Xt, Xt+h) = 0 for all t ∈ Z,
h 6= 0.
Define Ft−1 = σ(Xt−1, Xt−2, . . .). Then

E[Xt] = E[E[Xt|Ft−1]] = E[σt E[Zt|Ft−1]︸ ︷︷ ︸
=0

] = 0

For the covariance, suppose without loss of generality that h > 0. Then

Cov(Xt, Xt+h) = E[XtXt+h] = E[E[σtZtσt+hZt+h|Ft+h−1]]

= E[σtZtσt+h E[Zt+h|Ft+h−1]︸ ︷︷ ︸
=0

] = 0

(iii) For a strict white noise process, (Xt)t∈Z would need to be iid. However, it holds that

E[X2
t |Ft−1] = σ2

t = α0 +
p∑

k=1
αkX

2
t−k.

That means X2
t depends on Ft−1 if α1 > 0 or . . . or αp > 0. So in general, an ARCH(p)

process is not a strict white noise process.
On the other hand, for α1 = · · · = αp = 0 it trivially becomes strictly stationary since then
Xt = α

1/2
0 Zt.
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(iv) One of the most important stylized facts of financial log-returns are their volatility clu-
sters and – more generally – the time varying volatility. This cannot be replicated by a
strict white noise process. Hence, such a process cannot be recommended to model financial
log-returns.
More generally, a strict white noise process cannot satisfy properties (U1), (U2), (U4) and
(U5).

(b) Suppose you have a portfolio with d assets X1, . . . , Xd, which all have variance 1.

(i) [1 Point] What does it mean that the vector (X1, . . . , Xd) has an exchangeable distribution?
Solution:

It means that for any permutation π : {1, . . . , d} → {1, . . . , d} the distribution of (X1, . . . , Xd)
coincides with the distribution of (Xπ(1), . . . , Xπ(d)).

(ii) [1 Point] Show that exchangeability implies that all pairs (Xi, Xj), 1 ≤ i < j ≤ d, have the
same Pearson correlation ρ ∈ [−1, 1].
Solution:

Let ρ := cov(X1, X2). The exchangeability implies that for any permutation π : {1, . . . , d} →
{1, . . . , d} we have

(X1, X2) (d)= (Xπ(1), Xπ(2)).

Therefore,
ρ = corr(Xπ(1), Xπ(2)).

Moreover, for any i < j there is a permutation π such that (π(1), π(2)) = (i, j).

(iii) [2 Points] Show that necessarily ρ ≥ −1/(d− 1).
Solution:

Since the variances are 1, the correlation matrix coincides with the covariance matrix. .
We can calculate the variance of X1 + · · ·+Xd and use that the variance is non-negative.

0 ≤ Var(X1 +X2 + · · ·+Xd) =
d∑

i,j=1
Cov(Xi, Xj) =

d∑
i,j=1

corr(Xi, Xj) = d(1 + ρ(d− 1))

This is equivalent to
ρ ≥ − 1

d− 1

(iv) [3 Points] Show that for ρ = −1/(d − 1), the distribution of (X1, . . . , Xd) cannot have a
joint density.
Hint: Start by calculating the variance Var(X1 +X2 + · · ·+Xd).
Solution:
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If ρ = −1/(d− 1), then

Var(X1 +X2 + · · ·+Xd) =
d∑

i,j=1
Cov(Xi, Xj) = d(1 + ρ(d− 1)) = 0.

Hence, X1 + X2 + · · · + Xd must be constant almost surely. Therefore, (X1, . . . , Xd) only
attains values on a (d− 1)-dimensional sub-vectorspace of Rd.
Since any such subspace has d-dimensional Lebesgue measure 0, the distribution cannot
have a Lebesgue density.
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Question 3

(a) [3 Points] LetX1, X2, . . . be iid random variables with distribution F . LetMn = max{X1, . . . , Xn}
and suppose that xF = sup{x ∈ R : F (x) < 1} <∞.
Show that Mn converges in distribution to xF .
Solution:

We need to show that the distribution function FMn of Mn converges to the step function

G(x) =

0, x < xF

1, x ≥ xF

for all its continuity points of G, that is, for all x ∈ R, x 6= xF .
For any x ∈ R it holds that

FMn(x) = P[X1 ≤ x and X2 ≤ x, . . . , and Xn ≤ x] =
(
F (x)

)n
.

If x < xF , then F (x) ∈ [0, 1). Therefore, it holds that

lim
n→∞

(
F (x)

)n
= 0.

On the other hand for x > xF it holds that F (x) = 1. Hence,

lim
n→∞

(
F (x)

)n
= 1.

(b) Let F be the distribution function of a uniform distribution on [0, 1].

(i) [2 Points] Does F belong to the maximum domain of attraction, MDA(Hξ), of a standard
GEV distribution Hξ? If yes, determine the parameter ξ.
Solution:

We may use a characterisation result from the lecture for ξ < 0: F ∈ MDA(Hξ) if and only
if xF <∞ and 1− F (xF − 1/x) = x1/ξL(x) where L is a slowly varying function.
It holds that xF = 1 <∞ and

1− F (xF − 1/x) = 1− (1− 1/x) = x−1.

Since any constant is a slowly varying function, it holds that F ∈ MDA(Hξ) for ξ = −1.

(ii) [1 Point] Calculate the excess distribution function Fu(x) = P[X − u ≤ x | X > u],
0 ≤ u < xF , x ∈ [0, xF − u).
Solution:
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For 0 ≤ x ≤ xF , u < xF we get

P[X − u ≤ x | X > u] = P[u < X ≤ x+ u]
P[X > u] = x

1− u.

(iii) [2 Points] Does there exist a parameter ξ ∈ R and a function β : R→ (0,∞) such that

lim
u↑xF

sup
x>0
|Fu(x)−Gξ,β(u)(x)| = 0,

where Gξ,β denotes the cumulative distribution function of a GPD? If yes, for which ξ and β
does this hold?
Solution:

Pickands–Balkema–de Haan Theorem implies that there exists a measurable function
β : R→ (0,∞) such that

lim
u↑xF

sup
x>0
|Fu(x)−Gξ,β(u)(x)| = 0, (2)

if and only if F ∈ MDA(Hξ).
We have shown in (c) that F ∈ MDA(H−1), thus (1) holds for ξ = −1 and for some
function β(u).
Moreover, G−1,β(x) = x/β. Hence, the assertion holds for β(u) = 1− u.
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Question 4

(a) Consider the random vector (Z, |Z|), where Z follows a standard normal distribution.

(i) [2 Points] Sketch a scatterplot of a random sample from the distribution of (Z, |Z|) and also
a scatterplot of a random sample from the underlying copula of (Z, |Z|).
Solution:

A scatterplot of a random sample from (Z, |Z|) has the following shape:

−2 0 2 4

0
1

2
3

4

X

Y

(The qualitative V-shape of the graph is important here! Of course, it needs to be symmetric
around the line x = 0 and the slopes need to be ±1.)
A scatterplot of a random sample from the copula of (Z, |Z|) has the following form:

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

U1

U
2

(It is important that the qualitative V-shape does not change, but the symmetry axis must
be correct ay u1 = 0.5. Moreover, the slopes need to be ±2.)
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(ii) [2 Points] Compute the Pearson correlation of Z and |Z|. Are Z and |Z| independent?
Provide an argument for your claim.
Solution:

Since Z (d)= −Z it holds that (Z, |Z|) (d)= (−Z, | − Z|). Hence,

Cov(Z, |Z|) = Cov(−Z, | − Z|) = Cov(−Z, |Z|) = −Cov(Z, |Z|).

Hence, Cov(Z, |Z|) = 0.
Z and |Z| are not independent, even though they are uncorrelated. One possible argument
is that the copula of (Z, |Z|) does not correspond to the independence copula, as can be
seen from (a).

(iii) [1 Point] How would the scatterplot of a random sample from the copula change if we
considered (Z,Z2)? Provide a brief argument for your claim.
Solution:

The scatterplot would not change. The reason is that (Z, |Z|) and (Z,Z2) have the same
copula. Indeed, we only apply a strictly increasing transformation to the second component.
(The map x 7→ x2 is strictly increasing on [0,∞).) And copulas are invariant under strictly
increasing transformations of each component.

(b) Suppose you have iid observations (X1, Y1), . . . , (Xn, Yn) of a two-dimensional random vector
(X, Y ).

(i) [1 Point] Provide a formula for the sample version of Kendall’s tau, rτ (n).
Solution:

rτ (n) =
(
n

2

)−1 ∑
1≤i<j≤n

sign
(
(Xi −Xj)(Yi − Yj)

)
= 1
n(n− 1)

∑
1≤i 6=j≤n

sign
(
(Xi −Xj)(Yi − Yj)

)

(ii) [1 Point] Suppose that n = 4 and your random sample is

{(−1, 3), (0, 0), (2, 2), (3, 1)}. (3)

Compute rτ (n) on this sample.
Solution:

rτ (n) = 1
n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

sign
(
(Xi −Xj)(Yi − Yj)

)
= 1

4 · 3(−3 + 1− 1− 1)

= −1
3
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(iii) [2 Points] Suppose you have a new data point (Xn+1, Yn+1). Describe a condition under
which this new data point influences the sample version of Kendall’s tau maximally. Provide
an appropriate example for the concrete sample in (3).
Solution:

The new data point (Xn+1, Yn+1) must be either concordant with all data points
(X1, Y1), . . . , (Xn, Yn) or discordant with all data points (X1, Y1), . . . , (Xn, Yn).
Equivalently, for an equivalent characterisation of concordance with all data points,
(X1, Y1), . . . , (Xn, Yn), consider the componentwise order-statistics X(1) ≤ · · · ≤ X(n) and
Y(1) ≤ · · · ≤ Y(n). Then simultaneous concordance can be expressed as(

Xn+1 > X(n) and Yn+1 > Y(n)

)
or

(
Xn+1 < X(1) and Yn+1 < Y(1)

)
.

On the other hand, simultaneous discordance can be expressed as(
Xn+1 < X(1) and Yn+1 > Y(n)

)
or

(
Xn+1 > X(n) and Yn+1 < Y(1)

)
.

Possible appropriate examples are: For concordance (5, 5) or (−2,−2). For discordance
(−2, 5) or (5,−2).

(iv) [1 Point] What is the maximal influence of a new data point (Xn+1, Yn+1) on the sample
version of Kendall’s tau? That is, what is an upper bound for the difference

|rτ (n)− rτ (n+ 1)|,

which holds for any data set (X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1)?
Decide whether it is either

2 or 4
n+ 1 or 4

(n+ 1)2 .

Write down the solution on your submission sheet (answers on this sheet will not be counted).
You do not need to provide an explanation.
Solution:

4
n+ 1

The derivation is as follows (not necessary to get the point!): We can write

rτ (n) = 1(
n
2

) n−1∑
i=1

n∑
j=i+1

sign
(
(Xi −Xj)(Yi − Yj)

)
.
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Hence, we have

rτ (n+ 1) = 1(
n+1

2

)[(n
2

)
rτ (n) +

n∑
i=1

sign
(
(Xi −Xn+1)(Yi − Yn+1)

)]

= 2
(n+ 1)n

[
n(n− 1)

n
rτ (n) +

n∑
i=1

sign
(
(Xi −Xn+1)(Yi − Yn+1)

)]

= n− 1
n+ 1rτ (n) + 2

(n+ 1)n

n∑
i=1

sign
(
(Xi −Xn+1)(Yi − Yn+1)

)
.

This yields

|rτ (n+ 1)− rτ (n)| =
∣∣∣∣rτ (n)

[
n− 1
n+ 1 − 1

]
+ 2

(n+ 1)n

n∑
i=1

sign
(
(Xi −Xn+1)(Yi − Yn+1)

)∣∣∣∣
=
∣∣∣∣− 2

n+ 1rτ (n) + 2
(n+ 1)n

n∑
i=1

sign
(
(Xi −Xn+1)(Yi − Yn+1)

)∣∣∣∣
= 2
n+ 1

∣∣∣∣ 1n
n∑
i=1

sign
(
(Xi −Xn+1)(Yi − Yn+1)

)
− rτ (τ)

∣∣∣∣︸ ︷︷ ︸
≤2

≤ 4
n+ 1 .

(v) [1 Point] Compare and possibly contrast your previous result to Pearson’s correlation coef-
ficient.
Solution:

In contrast to Kendall’s tau, a new data point for Pearson’s correlation coefficient can
change the empirical correlation coefficient almost arbitrarily. That is, no matter what the
correlation on the existing sample (X1, Y1), . . . , (Xn, Yn) is, the correlation on
(X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1) can be any number in the interval (−1, 1).
(Hence, the correct answer for Pearson’s correlation coefficient is 2.)
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Question 5
In this exercise, any scoring function S(x, y), x, y ∈ R, has the interpretation that x ∈ R is a forecast
and y ∈ R an observation.

(a) [1 Point] In a comparative backtest you consider VaR0.95-forecasts from two different models,
M1 and M2. You compute average scores on a validation window for the following scoring functions:

S1(x, y) = |x− y|
S2(x, y) = (x− y)2

S3(x, y) = (1{y≤x} − 0.95)(x− y)

The results are summarized in the following table.

M1 M2
S1 3.88 3.23
S2 7.49 6.91
S3 2.54 3.02

Which model would you prefer and why?
Solution:

The model M1 is preferable. We should evaluate forecasts using strictly consistent scoring
functions. Only S3 is strictly consistent for VaR0.95. And a smaller average score indicates a
better forecast performance.

(b) [1 Point] Why is it important to evaluate forecasts for a distribution-based risk measure using
a strictly consistent scoring function for this risk measure?
Solution:

This is important because strictly consistent scores incentivize truthful forecasting. That is,
a correctly specified forecast achieves a smaller expected score than any other forecast.

(c) [2 Points] Show that for any strictly convex function φ : R → R with strictly positive second
derivative, the score

S(x, y) = −φ(x) + φ′(x)(x− y), x, y ∈ R,
is strictly consistent for the mean functional on the class of distributions with a finite mean.
Solution:

For any distribution F with finite mean and any forecast x ∈ R, we can compute the expected
score

S̄(x, F ) := EY∼F [S(x, Y )] = −φ(x) + φ′(x)(x− EY∼F [Y ]).

We need to show that S̄(x, F ) is strictly minimized for x = EY∼F [Y ].
The first order condition is

∂

∂x
S̄(x, F ) = φ′′(x)(x− EY∼F [Y ]) = 0.
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Since φ′′(x) > 0 this condition holds if and only if x = EY∼F [Y ].
Moreover, since φ′′(x) > 0, we have

∂

∂x
S̄(x, F )

< 0, x < EY∼F [Y ]
> 0, x > EY∼F [Y ].

This yields that S̄(x, F ) has a strict global minimum at x = EY∼F [Y ].

(d) [4 Points] Consider an AR(1) process (Yt)t∈N of the form

Y0 = 0 and Yt = θYt−1 + ut, t ≥ 1,

where |θ| < 1 and E[ut |Yt−1] = 0.
Two competing forecasts are available, Xt = 0 and X∗t = θYt−1, where t ≥ 1.
If S : R×R→ R is a strictly consistent scoring function for the mean functional, is it possible to
establish an inequality between the expected scores E[S(Xt, Yt)] and E[S(X∗t , Yt)]? Explain your
answer.
Hint: Start by computing E[Yt] and E[Yt |Yt−1].
Solution:

It holds that

Xt = E[Yt]
X∗t = E[Yt |Yt−1]

That means both forecasts are calibrated mean forecasts. However, strictly consistent scoring
functions prefer the more informative forecast, which is X∗t .
Hence,

E[S(X∗t , Yt)] ≤ E[S(Xt, Yt)].
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