Part I: Probability Theory

1. [6 Points]

Four people toss, one after the other, a fair coin. We assume that the outcomes of the four tosses are independent.
(a) [2 Points]

Compute the probability of obtaining 'Heads' exactly once.

Solution:

We have $E=\{H T T T, T H T T, T T H T, T T T H\}$ and $\mathbb{P}(E)=4 \times(1 / 2)^{4}=1 / 4$.
(b) [2 Points]

Compute the probability of obtaining 'Tails' exactly twice.
Solution:
We have $\mathbb{P}(\{$ 'Tails' exactly twice $\})=\binom{4}{2} \times \mathbb{P}(\{T T H H\})=\frac{4!}{2!2!} \frac{1}{2^{4}}=\frac{3}{8}$.
(c) $[2$ Points]

Compute the probability of obtaining 'Tails' at least once.

Solution:

We have $E^{c}=\{H H H H\}$ and $\mathbb{P}(E)=1-\mathbb{P}\left(E^{c}\right)=15 / 16$.

2. [9 Points]

A building has three floors. Three people get in and walk up to one of the floors. Let Ω denote the sample space, that is, the set of all possible elementary events describing which person goes to which floor.
(a) $[1$ Point $]$

Recall what a Laplace model is.
Solution:
Let $\Omega=\left\{\omega_{1}, \ldots, \omega_{N}\right\}$ with $N=|\Omega|$. A Laplace model stipulates that $\mathbb{P}\left(\left\{\omega_{i}\right\}\right)=1 / N$ for all $i \in\{1, \ldots, N\}$.
(b) [2 Points]

Compute $p(\omega)=\mathbb{P}(\{\omega\})$ for $\omega \in \Omega$ under the assumption of a Laplace model.

Solution:

Since $|\Omega|=3^{3}=27$, we have $p(\omega)=1 / 27$ for all $\omega \in \Omega$.
(c) [2 Points]

Compute the probability that all three people go to the same floor.

Solution:

Since there are three floors, the cardinality of this event E_{1} is three. Thus, its probability is $\mathbb{P}\left(E_{1}\right)=3 / 27=1 / 9$.
(d) [2 Points]

Compute the probability that they go to exactly two different floors.

Solution:

There are $\binom{3}{2} \times 2 \times\binom{ 3}{2}$ possible configurations in this event E_{2}. Hence, $\mathbb{P}\left(E_{2}\right)=3^{2} \times 2 / 3^{3}=$ 2/3.
(e) $[2$ Points]

Compute the probability that they all go to different floors.

Solution:

There are 3 ! possibilities for this event E_{3}. Hence, the probability is $\mathbb{P}\left(E_{3}\right)=3!/ 3^{3}=2 / 9$.
Alternative: $\Omega=E_{1} \cup E_{2} \cup E_{3}$ is a disjoint union. Thus, $\mathbb{P}\left(E_{1}\right)=1-\mathbb{P}\left(E_{2}\right)-\mathbb{P}\left(E_{3}\right)=2 / 9$.

3. [7 Points]

Consider three boxes such that

- Box \#1 contains one black and one white ball;
- Box \#2 contains two white balls;
- Box \#1 contains three black and one white ball.

Box \#1

Box \#2

Box \#3

We first choose randomly a box and then a ball from this box. From a chosen box, the balls have the same probability to be drawn. Let $W=\{$ The ball drawn is white $\}$.
(a) [2 Points]

We assume in this question that the boxes have the same probability to be chosen. Compute the probability of the event W.

Solution:

$$
\text { We have } \mathbb{P}(W)=\sum_{i=1}^{3} \mathbb{P}(W \mid \text { Box } \# \mathrm{i} \text { is chosen }) \times \frac{1}{3}=\frac{1}{3}\left(\frac{1}{2}+1+\frac{1}{4}\right)=\frac{7}{12}
$$

(b) [2 Points]

We assume now that $\mathbb{P}(\{$ Picking Box $\# 1\})=\mathbb{P}(\{$ Picking Box $\# 2\})=1 / 4$. Compute the probability that the ball drawn is black.
Solution:
Let $B=\{$ The ball drawn is black $\}$. Then,

$$
\begin{aligned}
\mathbb{P}(B) & =\mathbb{P}(B \mid \text { Box } \# 1) \times \frac{1}{4}+\mathbb{P}(B \mid \text { Box } \# 2) \times \frac{1}{4}+\mathbb{P}(B \mid \text { Box } \# 3) \times \frac{1}{2} \\
& =\frac{1}{2} \frac{1}{4}+0 \frac{1}{4}+\frac{3}{4} \frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

(c) [3 Points]

We assume again that the boxes have the same probabilities of being chosen. Given that the ball drawn is white, what is the conditional probability that it was drawn from Box \#2?
Solution:

We have

$$
\begin{aligned}
\mathbb{P}(\text { Box } \# 2 \mid W) & =\frac{\mathbb{P}(W \mid \text { Box } \# 2) \mathbb{P}(\text { Box } \# 2)}{\mathbb{P}(W)} \\
& =\frac{\mathbb{P}(W \mid \text { Box } \# 2) \mathbb{P}(\text { Box } \# 2)}{\sum_{i=1}^{3} \mathbb{P}(W \mid \text { Box } \# \mathrm{i}) \mathbb{P}(\text { Box } \# \mathrm{i})}=\frac{1 \times \frac{1}{3}}{\frac{1}{3}\left(\frac{1}{2}+1+\frac{1}{4}\right)}=\frac{4}{7} .
\end{aligned}
$$

4. [6 Points]

Consider a square with a random length X. We assume that $X \sim \mathcal{U}([0, a])$ is distributed uniformly for some $a>0$. Let A denote the area of the square.
(a) $[\mathbf{2}$ Points]

Compute the expected value $\mathbb{E}[A]$ and the variance $\mathbb{V}(A)$.

Solution:

We have

$$
\mathbb{E}[A]=\mathbb{E}\left[X^{2}\right]=\int_{0}^{a} \frac{x^{2}}{a} d x=\frac{a^{2}}{3}
$$

and $\mathbb{V}(A)=\mathbb{E}\left[A^{2}\right]-\mathbb{E}[A]^{2}$ with

$$
\mathbb{E}\left[A^{2}\right]=\mathbb{E}\left[X^{4}\right]=\int_{0}^{a} \frac{x^{4}}{a} d x=\frac{a^{4}}{5}
$$

so $\mathbb{V}(A)=\frac{a^{4}}{5}-\frac{a^{4}}{9}=\frac{4 a^{4}}{45}$.
(b) [2 Points]

Compute the cumulative distribution function of A.

Solution:

We have

$$
F_{A}(x)=\mathbb{P}\left(X^{2} \leq x\right)=\left\{\begin{array}{ll}
0 & \text { if } x<0 \\
\mathbb{P}(X \leq \sqrt{x}) & \text { if } x \geq 0
\end{array}\right\}= \begin{cases}0 & \text { if } x<0 \\
\sqrt{x} / a & \text { if } 0 \leq x<a^{2} \\
1 & \text { if } x \geq a^{2}\end{cases}
$$

(c) [2 Points]

Determine all $a>0$ such that $\mathbb{P}(A>1) \geq 1 / 2$.

Solution:

We have

$$
\mathbb{P}(A>1)=1-F_{A}(1)= \begin{cases}0 & \text { if } 1 \geq a^{2} \\ 1-1 / a & \text { if } 1<a^{2}\end{cases}
$$

Thus, $\mathbb{P}(A>1) \geq 1 / 2$ iff $1-1 / a \geq 1 / 2$ and $a>1$ iff $a \geq 2$.

5. [8 Points]

Let X_{1}, \ldots, X_{n} be i.i.d. $\sim \operatorname{Pois}(\lambda)$ for some $\lambda>0$.
(a) $[1$ Point $]$

Recall the definition of convergence in probability.

Solution:

We say that a sequence of random variables $\left(X_{n}\right)_{n \geq 1}$ converges in probability to a random variable X if $\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|X_{n}-X\right|>\varepsilon\right)=0$ for all $\varepsilon>0$.
(b) [2 Points]

By using Chebyshev's inequality, show that $\bar{X}_{n}:=\frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{\mathbb{P}} \lambda$ as $n \rightarrow \infty$.

Solution:

Let $\varepsilon>0$. Then,

$$
\mathbb{P}\left(\left|\bar{X}_{n}-\lambda\right|>\varepsilon\right) \leq \frac{\mathbb{V}\left(\bar{X}_{n}\right)}{\varepsilon^{2}}=\frac{\lambda}{n \varepsilon^{2}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

(c) $[\mathbf{2}$ Points]

Write down the Central Limit Theorem for the random variable \bar{X}_{n}.

Solution:

Since $\mathbb{E}\left[X_{i}\right]=\lambda<\infty$ and $\mathbb{V}\left(X_{i}\right)=\lambda<\infty$, the CLT applies and we have

$$
\frac{\sqrt{n}\left(\bar{X}_{n}-\lambda\right)}{\sqrt{\lambda}} \xrightarrow{d} \mathcal{N}(0,1) \quad \text { as } n \rightarrow \infty .
$$

(d) [3 Points]

Suppose that some hotel opens only for 100 days in any given year. For $i \in\{1, \ldots, 100\}$, let $X_{i}=$ The number of people the hotel receives on day $\# i$. Assuming that X_{1}, \ldots, X_{100} are i.i.d. $\sim \operatorname{Pois}(9)$, give an approximation of

$$
\mathbb{P}\left(840<\sum_{i=1}^{100} X_{i} \leq 960\right)
$$

You may use: $\Phi(1) \approx 0.84, \Phi(3 / 2) \approx 0.93$, and $\Phi(2) \approx 0.97$, where $\Phi(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-x^{2} / 2} d x$ for $z \in \mathbb{R}$.

Solution:

Note that

$$
840<\sum_{i=1}^{100} X_{i} \leq 960 \quad \Longleftrightarrow \quad-2<\frac{\sum_{i=1}^{100} X_{i}-100 \times 9}{10 \times 3} \leq 2
$$

Hence, by the CLT,

$$
\mathbb{P}\left(840<\sum_{i=1}^{100} X_{i} \leq 960\right) \approx \Phi(2)-\Phi(-2)=2 \Phi(2)-1 \approx 0.94
$$

Part II: Statistics

6. [9 Points]

Consider the parametric model $\mathcal{P}=\left\{P_{\theta} \mid \theta \in(0, \infty)\right\}$, where P_{θ} admits the density

$$
f_{\theta}(x)=\theta(1-x)^{\theta-1} \mathbb{1}_{x \in[0,1]} .
$$

(a) $[\mathbf{2}$ Points]

Compute $\mathbb{E}_{\theta}[X]$, where $X \sim P_{\theta}$.

Solution:

We have

$$
\begin{aligned}
\mathbb{E}_{\theta}[X] & =\theta \int_{0}^{1} x(1-x)^{\theta-1} d x=\theta \int_{0}^{1}(x-1+1)(1-x)^{\theta-1} d x \\
& =-\theta \int_{0}^{1}(1-x)^{\theta} d x+\theta \int_{0}^{1}(1-x)^{\theta-1} d x=\frac{1}{\theta+1}
\end{aligned}
$$

Alternative: f_{θ} is the density of a Beta distribution with parameters $\alpha=1$ and $\beta=\theta$. In particular, $\mathbb{E}_{\theta}[X]=\alpha /(\alpha+\beta)=1 /(1+\theta)$.
(b) [2 Points]

Construct the moment estimator of θ_{0} based on i.i.d. $X_{1}, \ldots, X_{n} \sim P_{\theta_{0}}$.

Solution:

Let $\hat{\theta}_{n}$ be the moment estimator. Then, $1 /\left(\hat{\theta}_{n}+1\right)=\bar{X}_{n}$, so $\hat{\theta}_{n}=1 / \bar{X}_{n}-1$.
(c) [2 Points]

Using the appropriate theorems, show that the moment estimator obtained in question (b) converges in probability to θ_{0}.

Solution:

By the WLLN, $\bar{X}_{n} \xrightarrow{\mathbb{P}} \mathbb{E}_{\theta_{0}}[X]=1 /\left(\theta_{0}+1\right)$. Put $g(x)=1 / x-1$ for $x \in(0, \infty)$. This function is continuous on $(0, \infty)$. By the continuous mapping theorem, we have $g\left(\bar{X}_{n}\right) \xrightarrow{\mathbb{P}}$ $g\left(1 /\left(\theta_{0}+1\right)\right)=\theta_{0}$, that is, $\hat{\theta}_{n} \xrightarrow{\mathbb{P}} \theta_{0}$.
(d) $[3$ Points $]$

For $\mathbb{X}=\left(X_{1}, \ldots, X_{n}\right)$ and X_{1}, \ldots, X_{n} i.i.d. $\sim P_{\theta_{0}}$, write down the \log-likelihood $l_{\mathbb{X}}(\theta)$ for $\theta \in(0, \infty)$ and find the MLE. (You can assume that $X_{i} \in(0,1)$ for all $i \in\{1, \ldots, n\}$.)
Solution:
We have $L_{\mathbb{X}}(\theta)=\prod_{i=1}^{n} f_{\theta}\left(X_{i}\right)$ and

$$
l_{\mathbb{X}}(\theta)=\sum_{i=1}^{n} \log \left(\theta\left(1-X_{i}\right)^{\theta-1}\right)=n \log (\theta)+(\theta-1) \sum_{i=1}^{n} \log \left(1-X_{i}\right)
$$

Thus,

$$
0=l_{\mathbb{X}}^{\prime}(\theta)=\frac{n}{\theta}+\sum_{i=1}^{n} \log \left(1-X_{i}\right) \quad \Longleftrightarrow \quad \theta=-\frac{n}{\sum_{i=1}^{n} \log \left(1-X_{i}\right)}=: \tilde{\theta}_{n}
$$

Note that $l_{\mathbb{X}}$ is strictly concave and, hence, the critical point $\tilde{\theta}_{n}$ has to be the MLE.

7. [6 Points]

Consider the uniform distribution $\mathcal{U}([\theta, \theta+1])$ for $\theta \in \mathbb{R}$.
(a) [1 Point]

Compute the expected value $\mathbb{E}_{\theta}[X]$ for $X \sim \mathcal{U}([\theta, \theta+1])$ (do not use the sheet of formulas).
Solution:
We have $\mathbb{E}_{\theta}[X]=\int_{\theta}^{\theta+1} x d x=\left((\theta+1)^{2}-\theta^{2}\right) / 2=\theta+1 / 2$.
(b) [1 Point]

Compute the variance $\mathbb{V}_{\theta}(X)$ for $X \sim \mathcal{U}([\theta, \theta+1])$ (do not use the sheet of formulas).

Solution:

Note that $X=Y+\theta$ with $Y \sim \mathcal{U}(0,1)$. Hence,

$$
\mathbb{V}_{\theta}(X)=\mathbb{V}_{\theta}(Y)=\mathbb{V}(Y)=\int_{0}^{1} y^{2} d y-\left(\int_{0}^{1} y d y\right)^{2}=1 / 12
$$

(c) $[2$ Points]

Let X_{1}, \ldots, X_{n} be i.i.d. $\sim \mathcal{U}\left(\left[\theta_{0}, \theta_{0}+1\right]\right)$. State the Central Limit Theorem for $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ in this case.

Solution:

> The expected value and the variance are finite. Hence, by the CLT, $\frac{\sqrt{n}\left(\bar{X}_{n}-\left(\theta_{0}+1 / 2\right)\right)}{\sqrt{1 / 12}} \stackrel{d}{d} \mathcal{N}(0,1)$ as $n \rightarrow \infty$.
(d) [2 Points]

Based on question (c), construct a bilateral and symmetric confidence interval for θ_{0} with asymptotic level $1-\alpha$ for $\alpha \in(0,1)$.

Solution:

We have

$$
\mathbb{P}\left(-z_{1-\alpha / 2} \leq \frac{\sqrt{n}\left(\bar{X}_{n}-\left(\theta_{0}+1 / 2\right)\right)}{\sqrt{1 / 12}} \leq z_{1-\alpha / 2}\right) \approx 1-\alpha
$$

where $z_{1-\alpha / 2}$ is the $(1-\alpha / 2)$-quantile of $\mathcal{N}(0,1)$. Thus,

$$
\mathbb{P}\left(\bar{X}_{n}-\frac{1}{2}-\frac{z_{1-\alpha / 2}}{\sqrt{12 n}} \leq \theta_{0} \leq \bar{X}_{n}-\frac{1}{2}+\frac{z_{1-\alpha / 2}}{\sqrt{12 n}}\right) \approx 1-\alpha,
$$

and the confidence interval is $\left[\bar{X}_{n}-\frac{1}{2}-\frac{z_{1-\alpha / 2}}{\sqrt{12 n}}, \bar{X}_{n}-\frac{1}{2}+\frac{z_{1-\alpha / 2}}{\sqrt{12 n}}\right]$.

8. [8 Points]

Consider the probability density function

$$
f_{\theta}(x)=\frac{c}{x^{3}} \mathbb{1}_{\{x \geq \theta\}}
$$

with $\theta \in(0, \infty)$ and $c>0$.
(a) $[\mathbf{1}$ Points]

Determine $c>0$ as a function of θ.

Solution:

We have $\int_{0}^{\infty} c x^{-3} d x=1$ iff $c=2 \theta^{2}$.
(b) $[2$ Points $]$

Let $\mathbb{X}=\left(X_{1}, \ldots, X_{n}\right)$, where X_{1}, \ldots, X_{n} are i.i.d. $\sim f_{\theta_{0}}$. Write down the likelihood function $L_{\mathbb{X}}(\theta)$ and show that the MLE is $\min _{1 \leq i \leq n} X_{i}$.

Solution:

We have

$$
\begin{equation*}
L_{\mathbb{X}}(\theta)=\prod_{i=1}^{n} \frac{2 \theta^{2}}{X_{i}^{3}} \mathbb{1}_{\left\{X_{i} \geq \theta\right\}}=\frac{2^{n} \theta^{2 n}}{\prod_{i=1}^{n} X_{i}^{3}} \mathbb{1}_{\left\{\min _{1 \leq i \leq n} X_{i} \geq \theta\right\}} . \tag{1}
\end{equation*}
$$

Thus, the MLE is indeed equal to $\min _{1 \leq i \leq n} X_{i}$.
(c) $[3$ Points $]$

Compute the cumulative distribution function of $\min _{1 \leq i \leq n} X_{i}$, where, as before, X_{1}, \ldots, X_{n} are i.i.d. $\sim f_{\theta_{0}}$.

Solution:

We have

$$
\begin{aligned}
\mathbb{P}\left(\min _{1 \leq i \leq n} X_{i} \leq t\right) & =1-\mathbb{P}\left(\min _{1 \leq i \leq n} X_{i}>t\right) \\
& =1-\mathbb{P}\left(X_{1}>t, \ldots, X_{n}>t\right)=1-\mathbb{P}\left(X_{1}>t\right)^{n}=1-(1-F(t))^{n}
\end{aligned}
$$

where

$$
F(t)=\mathbb{P}\left(X_{1} \leq t\right)=\left\{\begin{array}{ll}
0 & \text { if } t<\theta_{0} \\
\int_{\theta_{0}}^{t} 2 \theta_{0}^{2} x^{-3} d x & \text { if } t \geq \theta_{0}
\end{array}\right\}=\left(1-\left(\frac{\theta_{0}}{t}\right)^{2}\right) \mathbb{1}_{\left\{t \geq \theta_{0}\right\} .} .
$$

We conclude that

$$
\mathbb{P}\left(\min _{1 \leq i \leq n} X_{i} \leq t\right)=\left(1-\left(\frac{\theta_{0}}{t}\right)^{2 n}\right) \mathbb{1}_{\left\{t \geq \theta_{0}\right\}}
$$

(d) $[2$ Points $]$

For a fixed $\varepsilon>0$, compute $\mathbb{P}\left(\left|\min _{1 \leq i \leq n} X_{i}-\theta_{0}\right|>\varepsilon\right)$ and deduce that the MLE converges to θ_{0} in probability as $n \rightarrow \infty$.

Solution:

We have

$$
\begin{aligned}
\mathbb{P}\left(\left|\min _{1 \leq i \leq n} X_{i}-\theta_{0}\right|>\varepsilon\right) & =\mathbb{P}\left(\min _{1 \leq i \leq n} X_{i}>\theta_{0}+\varepsilon\right) \\
& =1-\mathbb{P}\left(\min _{1 \leq i \leq n} X_{i} \leq \theta_{0}+\varepsilon\right)=\left(\frac{\theta_{0}}{\theta_{0}+\varepsilon}\right)^{2 n} .
\end{aligned}
$$

Thus, $\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|\min _{1 \leq i \leq n} X_{i}-\theta_{0}\right|>\varepsilon\right)=0$, that is, $\min _{1 \leq i \leq n} X_{i} \xrightarrow{\mathbb{P}} \theta_{0}$ as $n \rightarrow \infty$.

9. [9 Points]

Consider X_{1}, \ldots, X_{n} i.i.d. $\sim \mathcal{N}\left(\theta, \sigma_{0}^{2}\right)$, where $\sigma_{0}>0$ is known and $\theta \in \mathbb{R}$. We want to test $H_{0}: \theta=0$ versus $H_{1}: \theta=1$. (\star)
(a) [2 Points]

Recall the Neyman-Pearson test of level α for testing a simple null hypothesis $H_{0}: p=p_{0}$ versus a simple alternative hypothesis $H_{1}: p=p_{1}$, where p is the density of an observed sample with respect to some σ-finite dominating measure.

Solution:

Let X be the observed sample. The NP-test of level α is

$$
\Phi_{N P}(X)= \begin{cases}1 & \text { if } \frac{p_{1}(X)}{p_{0}(X)}>k_{\alpha} \\ q_{\alpha} & \text { if } \frac{p_{1}(X)}{p_{0}(X)}=k_{\alpha} \\ 0 & \text { if } \frac{p_{1}(X)}{p_{0}(X)}<k_{\alpha}\end{cases}
$$

where k_{α} is the $(1-\alpha)$-quantile of $p_{1}(X) / p_{0}(X)$ under H_{0} and q_{α} is such that

$$
\mathbb{E}_{p_{0}}\left[\Phi_{N P}(X)\right]=\mathbb{P}_{p_{0}}\left(\frac{p_{1}(X)}{p_{0}(X)}>k_{\alpha}\right)+q_{\alpha} \mathbb{P}_{p_{0}}\left(\frac{p_{1}(X)}{p_{0}(X)}=k_{\alpha}\right)=\alpha .
$$

(b) [3 Points]

Find the NP-test of level α for the testing problem (\star).

Solution:

We have

$$
\begin{aligned}
\frac{p_{1}\left(X_{1}, \ldots, X_{n}\right)}{p_{0}\left(X_{1}, \ldots, X_{n}\right)} & =\frac{\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma_{0}} \exp \left(-\frac{\left(X_{i}-1\right)^{2}}{2 \sigma_{0}^{2}}\right)}{\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma_{0}} \exp \left(-\frac{X_{i}^{2}}{2 \sigma_{0}^{2}}\right)} \\
& =\exp \left(-\frac{1}{2 \sigma_{0}^{2}}\left(\sum_{i=1}^{n}\left(X_{i}-1\right)^{2}-X_{i}^{2}\right)\right) \\
& =\exp \left(\frac{1}{\sigma_{0}^{2}} \sum_{i=1}^{n} X_{i}\right) \exp \left(-\frac{n}{2 \sigma_{0}^{2}}\right) .
\end{aligned}
$$

Thus,

$$
\Phi_{N P}(X)= \begin{cases}1 & \text { if } \frac{1}{\sigma_{0}^{2}} \sum_{i=1}^{n} X_{i}>\tilde{k}_{\alpha} \\ \tilde{q}_{\alpha} & \text { if } \frac{1}{\sigma_{0}^{2}} \sum_{i=1}^{n} X_{i}=\tilde{k}_{\alpha} \\ 0 & \text { if } \frac{1}{\sigma_{0}^{2}} \sum_{i=1}^{n} X_{i}>\tilde{k}_{\alpha} .\end{cases}
$$

Here, \tilde{q}_{α} can be taken to be zero because the distribution is continuous under H_{0} (ac-
tually, it is always continuous since it is Gaussian). The NP-test can be rewritten as

$$
\Phi_{N P}(X)= \begin{cases}1 & \text { if } \frac{\sqrt{n} \bar{X}_{n}}{\sigma_{0}}>t_{\alpha} \\ 0 & \text { otherwise }\end{cases}
$$

with t_{α} such that $\mathbb{P}_{\theta=0}\left(\sqrt{n} \bar{X}_{n} / \sigma_{0}>t_{\alpha}\right)=\alpha$, that is, t_{α} is the $(1-\alpha)$-quantile of $\mathcal{N}(0,1)$.
(c) $[2$ Points]

Give the power of the NP-test obtained in question (b) and show that it converges to 1 as $n \rightarrow \infty$.

Solution:

The power is

$$
\beta_{n}=\mathbb{P}_{\theta=1}\left(\frac{\sqrt{n} \bar{X}_{n}}{\sigma_{0}}>t_{\alpha}\right)=\mathbb{P}_{\theta=1}\left(\frac{\sqrt{n}\left(\bar{X}_{n}-1\right)}{\sigma_{0}}>t_{\alpha}-\frac{\sqrt{n}}{\sigma_{0}}\right)=\mathbb{P}_{\theta=1}\left(Z>t_{\alpha}-\frac{\sqrt{n}}{\sigma_{0}}\right)
$$

with $Z \sim \mathcal{N}(0,1)$. Thus,

$$
\lim _{n \rightarrow \infty} \beta_{n}=1-\lim _{n \rightarrow \infty} \mathbb{P}_{\theta=1}\left(Z \leq t_{\alpha}-\frac{\sqrt{n}}{\sigma_{0}}\right)=1 .
$$

(d) [2 Points]

Argue that the NP-test obtained in question (b) is UMP for testing $H_{0}: \theta=0$ versus $H_{1}: \theta>0$.

Solution:

The test $\Phi_{N P}$ does not involve the particular value 1 for θ in H_{1}. Since $\Phi_{N P}$ is UMP for $H_{0}: \theta=0$ versus any alternative $H_{1}: \theta=\theta_{1}$ with $\theta_{1}>0$, we conclude that its power $\beta\left(\theta_{1}\right)$ has to be maximal. This means that it has to be UMP for testing $H_{0}: \theta=0$ versus $H_{1}: \theta>0$.

10. [6 Points]

100 students who attended the lectures on Probability and Statistics were asked the following questions:

- Q1: Did you like the lectures? (yes/no)
- Q2: What was your preferred mode of attendance? (presence/online)

Put

$$
X=\left\{\begin{array}{ll}
1 & \text { if the answer to Q1 is 'yes' } \\
2 & \text { if the answer to Q1 is 'no' }
\end{array} \quad Y= \begin{cases}1 & \text { if the answer to Q2 is 'presence' } \\
2 & \text { if the answer to Q2 is 'online' }\end{cases}\right.
$$

The goal is to test whether there is an association between X and Y.

(a) $[1$ Points]

Describe the testing problem mathematically.

Solution:

We want to test $H_{0}: X$ and Y are independent versus H_{1} : They are not independent.
(b) [3 Points]

Write down the appropriate test-statistic and the related test of asymptotic level α.
Solution:
The test-statistic is

$$
Q_{n}=n \frac{\left(N_{11} N_{22}-N_{12} N_{21}\right)^{2}}{N_{1+} N_{2+} N_{+1} N_{+2}}
$$

with $N_{i j}=\#\left\{k \mid\left(X_{k}, Y_{k}\right)=(i . j)\right\}$ and $N_{i+}=N_{i 1}+N_{i 2}, N_{+j}=N_{1 j}+N_{2 j}$ for the data given by i.i.d. copies $\left(X_{k}, Y_{k}\right)$ of (X, Y). The test is

$$
\Phi\left(N_{11}, N_{12}, N_{21}, N_{22}\right)= \begin{cases}1 & \text { if } Q_{n}>q_{1-\alpha} \\ 0 & \text { otherwise }\end{cases}
$$

with $q_{1-\alpha}$ the $(1-\alpha)$-quantile of $\chi_{(1)}^{2}$.
(c) $[\mathbf{2 ~ P o i n t s] ~}$

Take $\alpha=0.05$. What is the decision you make using the test from question (b) if the survey results yielded the following contingency table?

You may use:

- the 0.95 -quantile of $\chi_{(1)}^{2} \approx 3.84$,
- the 0.975 -quantile of $\chi_{(1)}^{2} \approx 5.02$,
- the 0.95 -quantile of $\chi_{(2)}^{2} \approx 5.99$,
- the 0.975 -quantile of $\chi_{(2)}^{2} \approx 7.37$.

Solution:
We have

$$
Q_{n}=100 \times \frac{(40 \times 20-30 \times 10)^{2}}{50 \times 50 \times 70 \times 30}=\frac{100}{21} \approx 4.76>3.84,
$$

so we reject H_{0}.

