D-MATH

Exam Wahrscheinlichkeit und Statistik 401-2604-00L

Last Name
 First Name
 XX
 Legi-Nr.
 XX-000-000
 Exam-No.
 000

Please do not turn the page yet!

Please take note of the information on the answer-booklet.

Part I: Probability Theory Question 1

A deck of 52 cards contains 13 cards in each of the four suits: Spades, Hearts, Diamonds and Clubs. A hand of 4 cards is drawn from the deck. We assume that any such 4 cards have the same probability to be drawn. Let Ω be the sample space associated with the experiment.
(a) $[1$ Point $]$

Determine $|\Omega|$.
(b) [1 Point]

What is the probability that all 4 cards are of the same suit?
(c) $[1$ Point $]$

What is the probability that all 4 cards are of different suits?
(d) $[1$ Point $]$

What is the probability that 2 of the cards are Spades and the other 2 are Hearts?
(e) [2 Points]

What is the probability that at least 3 cards are Diamonds?

Question 2

4 people are going to be photographed. Different configurations for the order, in which these people line up, are possible for the photo as they did not get any advice from the photographer. We assume that all the configurations have the same probability to occur. Let Ω be the space associated with the experiment.
(a) $[1$ Point $]$

Determine $|\Omega|$.
The people to be photographed are a woman, her husband and their little daughter and son.
(b) [1 Point]

What is the probability that the man is next to his wife?
(c) [1 Point]

What is the probability that the kids are as far away from each other as possible?
(d) [1 Point]

What is the probability that the kids are as far away from each other as possible while the boy is next to his father?

Question 3

Consider 2 drawers such that drawer \#1 contains 2 red, 2 white and 2 black pairs of socks and drawer \# 2 contains 4 red, 1 white and 3 black pairs of socks. We first choose a drawer and then 2 pairs of socks from this drawer. Each pair of socks in a given drawer has the same probability to be chosen. Let $E=\{$ the selected pairs of socks are white and black $\}$.
(a) [2 Points]

We assume in this question that the drawers have the same probability to be selected. Compute $\mathbb{P}(E)$.
(b) [2 Points]

We assume again that the drawers have the same probability to be selected. Given the event $F=\{$ the pairs selected are both red $\}$, compute the conditional probability that they were selected from drawer \#2.
(c) [2 Points]

We assume now that $\mathbb{P}($ selecting drawer $\# 1)=2 / 3$. Given the event F as above, what is the conditional probability that the pairs were selected from drawer $\# 1$?

Question 4

Consider K the number of failed attempts needed before a striker shoots a goal. We assume that K is a random variable with a geometric distribution of success parameter $p \in(0,1)$, i.e. $\mathbb{P}(K=k)=$ $(1-p)^{k} p$ for $k \in \mathbb{N}_{0}=\{0,1,2, \ldots\}$.
(a) $[1$ Point]

Compute $\mathbb{E}(K)$.
(For this question, the sheet of formulas must not be used).
(b) [2 Points]

Compute $\mathbb{E}\left(K^{2}\right)$ and $\mathbb{V}(K)$.
(For this question, the sheet of formulas must not be used).
Hint: You can use the fact that

$$
\sum_{k=2}^{\infty} k(k-1)(1-p)^{k-2}=2 p^{-3} .
$$

(c) [2 Points]

Let $s \leq t$ in \mathbb{N}_{0}. Compute $\mathbb{P}(K \geq t \mid K \geq s)$.
(d) [1 Point]

What do you notice about $\mathbb{P}(K \geq t \mid K \geq s)$? How is this properly called?

Question 5

(a) $[1$ Point $]$

Let X_{1}, \ldots, X_{n} be i.i.d. random variables from some distribution such that $\mathbb{E}\left(X_{i}\right)=\mu<\infty$ and $\mathbb{V}\left(X_{i}\right)=\sigma^{2} \in(0, \infty)$. State the Central Limit Theorem for the empirical mean $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.

Now consider the same random variable K as in Question 4.
(b) [2 Points]

Suppose that in 100 games, the number of failed attempts, which the main striker of a well-known soccer team needed before scoring a goal, were recorded. We call these data K_{1}, \ldots, K_{100}. We assume that K_{1}, \ldots, K_{100} are i.i.d. like K with success parameter p. Find a normal approximation of the probability $\mathbb{P}\left(\sum_{i=1}^{100} K_{i} \leq 2100\right)$ as a function of $\mu=\mathbb{E}\left(K_{i}\right)$ and $\sigma^{2}=\mathbb{V}\left(K_{i}\right)$.
(c) [1 Point]

Give the value of the normal approximation in (b) if you know that $p=1 / 20, \sigma^{2}=(1-p) / p^{2}$ and $\mathbb{P}(Z \leq 0.51) \approx 0.7, \mathbb{P}(Z \leq 1.02) \approx 0.85$ and $\mathbb{P}(Z \leq 2.01) \approx 0.98$ for $Z \sim \mathcal{N}(0,1)$.

Part II: Statistics Question 6

Consider the parametric model $\mathcal{P}=\left\{P_{\lambda}: \lambda \in(0, \infty)\right\}$, where P_{λ} admits the density

$$
p_{\lambda}(x)=\frac{e^{-\lambda} \lambda^{x}}{x!}, \quad x \in \mathbb{N}_{0} .
$$

(a) $[1$ Point $]$

Let $X \sim P_{\lambda}$. Compute $\mathbb{E}_{\lambda}(X)$.
(For this question, the sheet of formulas must not be used).
(b) [1 Point]

Construct the moment estimator of λ_{0} based on i.i.d. random variables $X_{1}, \ldots, X_{n} \sim P_{\lambda_{0}}$.
(c) [2 Points]

Compute $\mathbb{E}_{\lambda}\left(X^{2}\right)$ and $\mathbb{V}_{\lambda}(X)$ with $X \sim P_{\lambda}$.
(For this question, the sheet of formulas must not be used).
(d) [1 Point]

Let X_{1}, \ldots, X_{n} be i.i.d. $\sim P_{\lambda_{0}}$ and $\hat{\lambda}_{n}$ the estimator from (b). Show that $\sqrt{n}\left(\hat{\lambda}_{n}-\lambda_{0}\right) \xrightarrow{d} \mathcal{N}\left(0, \sigma_{0}^{2}\right)$ and specify σ_{0} as a function of λ_{0}.

Question 7

Consider the statistical model $\mathcal{P}=\left\{P_{\sigma}: \sigma \in(0, \infty)\right\}$, where P_{σ} admits the density

$$
p_{\sigma}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{x^{2}}{2 \sigma^{2}}}, \quad x \in \mathbb{R} .
$$

(a) [2 Points]

Let $\mathbb{X}=\left(X_{1}, \ldots, X_{n}\right)$ with $X_{1}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} P_{\sigma_{0}}$ for some $\sigma_{0}>0$. Write down the log-likelihood function $\sigma \mapsto l_{\mathbb{X}}(\sigma)$.
(b) [2 Points]

Show that the MLE $\hat{\sigma}_{n}$ satisfies $\hat{\sigma}_{n}^{2}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}$.
(c) $[1$ Point $]$

Recall the definition of almost sure convergence.
(d) [2 Points]

Show that $\hat{\sigma}_{n}^{2} \xrightarrow{\text { a.s. }} \sigma_{0}^{2}$.

Question 8

Consider the uniform distribution $\mathcal{U}([0, \theta])$ for $\theta \in(0, \infty)$.
(a) [2 Points]

Compute $\mathbb{E}_{\theta}(X)$ and $\mathbb{V}_{\theta}(X)$.
(For this question, the sheet of formulas must not be used).
(b) $[1$ Point $]$

Let X_{1}, \ldots, X_{n} be i.i.d. $\sim \mathcal{U}\left(\left[0, \theta_{0}\right]\right)$ for some $\theta_{0}>0$. State the Central Limit Theorem for \bar{X}_{n}.
(c) [2 Points]

Use the previous question to build an asymptotic confidence interval of level $1-\alpha$ for θ_{0}.

Question 9

Consider X_{1}, \ldots, X_{n} to be i.i.d. $\sim \operatorname{Bernoulli}(\theta)$ for some $\theta \in(0,1)$. We want to test $H_{0}: \theta=1 / 2$ versus $H_{1}: \theta=\theta_{1}$ for some fixed $\theta_{1} \in(1 / 2,1)$.
(a) $[3$ Points]

Build the Neyman-Pearson test for this testing problem. We take the level of the test to be equal to a predetermined $\alpha \in(0,1)$.
(b) [2 Points]

Let F_{0} be the cdf of $\operatorname{Bin}(n, 1 / 2)$. For $n=20$, we give the following table:

t	12	13	14
$F_{0}(t)$	0.868	0.942	0.979

Based on this table, give the precise form of the NP-test of level $\alpha=0.05$.
(c) $[1$ Point $]$

Suppose that we observe $\sum_{i=1}^{n} X_{i}=14$. What decision will be taken using the NP-test?
(d) [1 Point]

Let $\tilde{\Phi}$ be another test for the same testing problem such that $\mathbb{E}_{\theta_{0}}\left(\tilde{\Phi}\left(X_{1}, \ldots, X_{n}\right)\right) \leq \alpha$. What can you say about the sign of

$$
\mathbb{E}_{\theta_{1}}\left(\tilde{\Phi}\left(X_{1}, \ldots, X_{n}\right)\right)-\mathbb{E}_{\theta_{1}}\left(\Phi^{N P}\left(X_{1}, \ldots, X_{n}\right)\right),
$$

where $\Phi^{N P}$ is the NP-test considered above? Why?

Question 10

A die is thrown n times and the face on which it falls is recorded. For $i \in\{1, \ldots, 6\}$, let N_{i} be the number of times the die falls on face i. We denote by X the face on which the die falls. We want to test

$$
H_{0}: \mathbb{P}(X=i)=\frac{1}{6} \forall i \in\{1, \ldots, 6\} \quad \text { versus } \quad H_{1}: \exists i \in\{1, \ldots, 6\} \text { s.t. } \mathbb{P}(X=i) \neq \frac{1}{6} .
$$

Finally, let

$$
D_{n}^{2}=\sum_{i=1}^{6} \frac{\left(N_{i}-n / 6\right)^{2}}{n / 6}
$$

(a) [2 Points]

What is the asymptotic distribution of D_{n}^{2} under H_{0} ?
(b) [1 Point]

In this question, $n=120$ and $\left(N_{1}, N_{2}, N_{3}, N_{4}, N_{5}, N_{6}\right)=(15,30,20,25,10,20)$. What decision do you take? We give $\alpha=0.05$ and

- the 0.95 -quantile of $\chi_{(5)}^{2}$ is $q_{1-\alpha, 5}=11.07$,
- the 0.95 -quantile of $\chi_{(6)}^{2}$ is $q_{1-\alpha, 6}=12.59$,
- the 0.95 -quantile of $\chi_{(7)}^{2}$ is $q_{1-\alpha, 7}=14.07$.

