D-MATH

Exam Probability and Statistics

401-2604-00L

Last Name

First Name

Legi-Nr.
XX-000-000 Exam-No.
000

Please do not turn the page yet!

Please take note of the information on the answer-booklet.

Part I: Probability Theory Question 1

A code consists of any 3 digits chosen randomly between 0 and 4 .
(a) $[1$ Point $]$

Let Ω be the sample space of all such codes. Write down Ω and give its cardinality $|\Omega|$.
In the following questions b)-d), we assume that the distribution of the codes follows a Laplace model.
(b) [1 Point]

Compute the probability that all the digits are equal.
(c) [1 Point]

Compute the probability that the $1^{\text {st }}$ and the $3^{\text {rd }}$ digits are equal.
(d) [1 Point]

Compute the probability that the digits are all different.

Question 2

In this question, we consider 4 people. We are interested in the days of the week on which they were born. For example, (Monday, Monday, Wednesday, Sunday) is a possible answer when the 4 people are asked about this day of the week. We assume that all such possible answers have the same probability to be given.
(a) $[1$ Point $]$

Write down Ω and give its cardinality $|\Omega|$.
(b) [1 Point]

Compute the probability that all the 4 people were born on Monday.
(c) $[1$ Point $]$

Compute the probability that all the 4 people were born on the same day of the week.
(d) $[1$ Point $]$

Compute the probability that the 4 people were born on different days of the week.
(e) $[\mathbf{2 ~ P o i n t s] ~}$

Conclude from d) that the probability that at least 2 people were born on the same day of the week is larger than 0.6.

Question 3

A school teacher has 2 boxes which contain books. We will call these boxes Box $\# 1$ and Box $\# 2$. Box \#1 contains: 1 English, 2 German and 2 French books.
Box \#2 contains: 2 English, 3 German and 1 French books.
For her reading course, the teacher selects a box and then takes 2 books from this selected box.
In all the questions a)-c), it is assumed that each of the boxes can be selected with the same probability. Also, from each of the boxes, the books can be selected with the same probability.
(a) $[\mathbf{2 ~ P o i n t s] ~}$

Compute the probability that the selected books are French and German books.
(b) [2 Points]

Compute the probability that the selected books are German books.
(c) $[3$ Points $]$

Let $S=\{$ The selected books are of the same language $\}$. Given S, compute the conditional probability that Box \#1 was selected.

Question 4

Consider two random variables X and Y such that X and Y are independent and $X \sim \operatorname{Pois}(\lambda)$, $Y \sim \operatorname{Pois}(\mu)$ for $\lambda \in(0, \infty)$ and $\mu \in(0, \infty)$.
(a) $[1$ Point $]$

Write down the mathematical definition of independence of X and Y.
(b) [2 Points]

Let $S=X+Y$. Show that S has a Poisson distribution and determine its parameter.
(c) $[\mathbf{2 ~ P o i n t s] ~}$

Fix $s \in \mathbb{N}_{0}$. Determine the conditional distribution of X given the event $\{S=s\}$, that is, determine $\mathbb{P}(X=x \mid S=s), x \in \mathbb{N}_{0}$.
(d) $[2$ Points]

Give $\mathbb{E}(X \mid S=s)$ and deduce $\mathbb{E}(X \mid S)$.
(e) [2 Points]

If $\lambda=\mu$, determine $\mathbb{E}(X \mid S)$ using only the symmetry in the problem and the properties of conditional expectation.

Question 5

Consider a sequence of random variables $\left(X_{n}\right)_{n \geq 1}$ such that

$$
\mathbb{P}\left(X_{n}=0\right)=1-\frac{1}{n^{2}} \quad \text { and } \quad \mathbb{P}\left(X_{n}=n^{\alpha}\right)=\frac{1}{n^{2}}
$$

for some $\alpha>0$.
(a) [1 Point]

Recall the definition of convergence in probability of some sequence of random variables $\left(X_{n}\right)_{n \geq 1}$ to a random variable X.
(b) [1 Point]

Show that the sequence $\left(X_{n}\right)_{n \geq 1}$ converges to 0 in probability.
(c) $[1$ Point $]$

For $r>0$, show that $\lim _{n \rightarrow \infty} \mathbb{E}\left(X_{n}^{r}\right)=0$ if and only if $r<\frac{2}{\alpha}$.
(d) $[2$ Points $]$

Does $\left(X_{n}\right)_{n \geq 1}$ converge to 0 almost surely? Justify your answer.

Question 6

The 2-dimensional movement in a unit square of some particle is random. The random position (X, Y) of the particle has a joint distribution that admits the density

$$
f(x, y)=c x^{2} y \mathbb{1}_{\{0 \leq x \leq 1,0 \leq y \leq 1\}}
$$

with respect to Lebesgue measure on $\mathcal{B}_{\mathbb{R}^{2}}$ (the Borel σ-algebra on \mathbb{R}^{2}), for some $c>0$.
(a) $[1$ Point $]$

Determine c.
(b) [2 Points]

Compute the marginal densities of X and Y, respectively.
Are X and Y independent? Justify your answer.
(c) $[\mathbf{2 ~ P o i n t s] ~}$

Compute $\mathbb{P}\left(X \leq \frac{1}{2}\right)$ and $\mathbb{P}\left(\max (X, Y) \leq \frac{1}{2}\right)$.
(d) [2 Points]

Suppose that the particle can only move in the lower triangle $\{0 \leq y \leq x \leq 1\}$ and the density of the random position is

$$
f(x, y)=c^{\prime} x^{2} y \mathbb{1}_{\{0 \leq y \leq x \leq 1\}}
$$

for some $c^{\prime}>0$. Determine c^{\prime}.

Part II: Statistics Question 7

The number of people coming to a restaurant between 12:00 and 14:00 is assumed to have a Poisson distribution with some (unknown) rate $\lambda_{0}>0$. We observe X_{1}, \ldots, X_{n} i.i.d. random variables from this distribution.
(a) [3 Points]

Write down the log-likelihood function based on the random sample $\mathbb{X}=\left(X_{1}, \ldots, X_{n}\right)$ and find the MLE of λ_{0}.
(b) $[1$ Point $]$

Write down the CLT for \bar{X}_{n}.
(c) [3 Points]

Using the relevant theorems, show that

$$
\frac{\sqrt{n}\left(\bar{X}_{n}-\lambda_{0}\right)}{h\left(\bar{X}_{n}\right)} \xrightarrow{d} \mathcal{N}(0,1)
$$

for some function h on $(0, \infty)$ and specify the function h.
(d) $[2$ Points]

Deduce from c) a two-sided and symmetric confidence interval for λ_{0} with asymptotic level α, $\alpha \in(0,1)$.

Question 8

The delay of some train is a random variable which we denote here by T. We assume that T admits an absolutely continuous distribution with density which belongs to the parametric family

$$
\left\{p_{\theta}(t)=\frac{2(\theta-t)}{\theta^{2}} \mathbb{1}_{t \in[0, \theta]}, \quad \theta \in(0, \infty)\right\}
$$

(a) [2 Points]

For a positive integer $k \in \mathbb{N}$, show that

$$
\mathbb{E}_{\theta}\left(T^{k}\right)=\frac{2 \theta^{k}}{(k+1)(k+2)}
$$

(b) [2 Points]

Deduce from a) the expectation and variance of T when $T \sim p_{\theta}$.
(c) $[\mathbf{2 ~ P o i n t s] ~}$

Let T_{1}, \ldots, T_{n} be i.i.d. delays of this train. We denote by θ_{0} the true unknown parameter.
Determine $\hat{\theta}_{n}$ the moment estimator of θ_{0} based on the observed delays.
(d) $[2$ Points $]$

Recall the CLT for $\bar{T}_{n}=\frac{1}{n} \sum_{i=1}^{n} T_{i}$ and show that it implies that $\forall z \in \mathbb{R}$

$$
\mathbb{P}_{\theta_{0}}\left(\sum_{i=1}^{n} T_{i}>\frac{\theta_{0} z}{3 \sqrt{2}} \sqrt{n}+\frac{\theta_{0}}{3} n\right) \xrightarrow[n \rightarrow \infty]{ } \frac{1}{\sqrt{2 \pi}} \int_{z}^{+\infty} e^{-\frac{x^{2}}{2}} d x .
$$

(e) [2 Points]

In this question, we assume that $\theta_{0}=9$ (minutes), and that the number of working days in a month of an employee who takes this train is 20 .
Show that the probability that the employee loses in a month more than 1 hour because of the train delay is approximately $\frac{1}{2}$. (We assume that $n=20$ is big enough for the convergence in d) to hold).

Question 9

Let X denote either a random variable or a random sample. We assume that X admits a distribution that has a density p with respect to a σ-finite dominating measure μ.

Consider the problem of testing

$$
H_{0}: p=p_{0} \quad \text { versus } \quad H_{1}: p=p_{1}
$$

for some given densities p_{0} and p_{1} such that $p_{0} \neq p_{1}$.
(a) $[1$ Point $]$

Recall the definition of a UMP test of level $\alpha \in(0,1)$ for the testing problem in (\star).
(b) [2 Points]

Give the Neyman-Pearson test of level α for the problem in (\star) by specifying all the quantities on which it depends.
(c) [2 Points]

Show that the Neyman-Pearson test is UMP of level α.

Question 10

Let X_{1}, \ldots, X_{n} be i.i.d. $\sim \mathcal{N}\left(\theta, \sigma^{2}\right)$ for $\left(\theta, \sigma^{2}\right) \in \Theta=\mathbb{R} \times(0, \infty)$.
We want to test

$$
H_{0}: \theta=0 \quad \text { versus } \quad H_{1}: \theta \neq 0 .
$$

(a) $[1$ Point $]$

If $\sigma=\sigma_{0}$ is known, construct a suitable test of level α.
(b) [1 Point]

If σ is not known, construct a suitable test of level α.
(c) $[1$ Point $]$

If $H_{1}: \theta>0$ and $\sigma=\sigma_{0}$ is known, construct a suitable test of level α.

