
Problems

1. (10 points) For each of the following questions, exactly one answer is correct. Each correct
answer gives 1 point, and each incorrect answer results in a 1/2 point reduction. The minimal
possible total score for the full problem is 0.

a) Let (Sn)n=0,...,N be a random walk. Which of the following is NOT a stopping time?

1. inf{n : Sn ≥ 5} ∧N
2. inf{n : Sn+1 ≥ 5} ∧N
3. inf{n : Sn−1 ≥ 5} ∧N

b) Let (Sn)n=0,..,N be a random walk. Which of the following statements is TRUE?

1. E(S2
n) is increasing in n.

2. For any stopping time T , E(S2
T ) = E(S2

0).

3. Var(S2
n) = n2.

c) Let µ and µn, n ∈ N, be distributions on R. Let F , Fn be their respective distribution
functions. Which of the following statements is equivalent to µn → µ weakly?

1. Fn(x)→ F (x) for every x ∈ R at which F is continuous.

2.
∫
R f(x)dµn(x)→

∫
R f(x)dµ(x) for every function f : R→ R.

3. Fn(x)→ F (x) for every x ∈ R at which F is strictly positive.

d) Which of the following statements is FALSE?

1. Sum of independent Bernoulli random variables is still a Bernoulli random variable.

2. Sum of independent Poisson random variables is still a Poisson random variable.

3. Sum of independent Normal random variables is still a Normal random variable.

e) Let X1 and X2 be independent random variables with characteristic function φ1 and
φ2, respectively. What is the characteristic function φ of X1 −X2?

1. φ(u) = φ1(u)− φ2(u)

2. φ(u) = φ1(u)/φ2(u)

3. φ(u) = φ1(u)φ2(−u)

f) If Xn converges in probability to X, then which of the following statements follows?

1. Xn converges almost surely to X.

2. limn→∞ E(Xn) = E(X).

3. Xn converges weakly to X.
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g) The characteristic function φ of a Binomial(n, p) random variable is given by:

1. φ(u) = (euin+ (1− n))p

2. φ(u) = (euip+ (1− p))n

3. φ(u) = (enip+ (1− p))u

h) Let (Xn)n∈N be an i.i.d. sequence of N(0, σ2) random variables. Define σn = 1
n

∑n
i=1X

2
n

and σ̃n = 1
n−1

∑n
i=1X

2
n. Which property is TRUE about these estimators?

1. σ̃n is unbiased.

2. σn is consistent.

3. Var(σn) ≥ Var(σ̃n).

i) Suppose a statistical test resulted in a p-value of 0.025. Which of the following state-
ments is TRUE?

1. The null hypothesis could not be rejected at significance level 0.01.

2. The probability that the null hypothesis is true is 0.025.

3. The null hypothesis could not be rejected at significance level 0.05

j) Let A and B be two events with positive probability. Which of the following equations
is Bayes’ rule?

1. P(B | A) = P(A | B)P(B)/P(A)

2. P(B | A) = P(A | B)P(A)/P(B)

3. P(B | A) = P(A ∩B)P(B)/P(A)
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2. (15 points) Let X1, X2, . . . be an i.i.d. sequence of Poisson(λ) distributed random variables
for some fixed λ > 0.

a) How does 1
n

∑n
i=1Xi behave as n→∞?

Solution: Since E(X2
1 ) < ∞, the SLLN implies that the average converges almost

surely to E(X1) = λ.

b) How does 1√
n

∑n
i=1(Xi − λ) behave as n→∞?

Solution: Since E(X1) = λ and Var(X1) = λ, the CLT implies that 1√
n

∑n
i=1(Xi − λ)

converges weakly to the N(0, λ) distribution.

Suppose now you observe a noisy version of the Xi’s. Specifically, let Yi = Xi + Zi, where
Zi ∼ N(0, σ2) for some σ ≥ 0. Assume all random variables are mutually independent.

c) How does 1√
n

∑n
i=1(Yi − λ) behave as n→∞?

Solution: Since E(Yi) = λ and Var(Yi) = Var(Xi) + Var(Zi) = λ+σ2, the CLT implies
that 1√

n

∑n
i=1(Yi − λ) converges to the N(0, λ+ σ2) distribution.

d) Suppose you observe a sample Y1, . . . , Yn, and would like to test for the presence of
noise. Specifically, you consider the hypotheses{

Null: σ2 = 0;

Alternative: σ2 > 0.

Design a test at significance level α = 0, with power 1 at any σ2 > 0.

Solution: If σ2 = 0 then all the Yi take integer values almost surely. If σ2 > 0 then all
the Yi take non-integer values almost surely. Thus, the test

Reject the Null ⇐⇒ Yi is non-integer for all i = 1, . . . , n

has level α = 0 (since the Null is almost surely accepted if it is true) and power 1 at
any σ2 > 0 (since the Null is almost surely rejected whenever σ2 > 0).
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3. (15 points) Consider the probability density function

fX(x) =

{
(α + α2)xα−1(1− x) x ∈ (0, 1)

0 otherwise

where α > 0 is a parameter. The corresponding distribution is called the Beta(α, 2) distri-
bution.

a) Show that fX is indeed a probability density function.

Solution: Clearly fX is nonnegative. To show it integrates to one, compute:∫ 1

0

xα−1(1− x)dx =

∫ 1

0

xα−1dx−
∫ 1

0

xαdx =
1

α
− 1

1 + α
=

1

α + α2
.

Thus
∫∞
−∞ fX(x)dx = 1.

b) Show that E(− logX) =
1 + 2α

α + α2
, where X ∼ fX .

Solution: Write

E(logX1) = (α + α2)

∫ 1

0

log(x)xα−1(1− x)dx.

Integration by parts yields∫ 1

0

log(x)xα−1dx = [α−1 log(x)xα]10 − α−1
∫ 1

0

xα−1dx = −α−2,

and similarly
∫ 1

0
log(x)xαdx = −(1 + α)−2. Thus

E(− logX1) = (α + α2)

(
1

α2
− 1

(1 + α)2

)
=

1 + 2α

α + α2
.

c) Let α̂n denote the maximum likelihood estimator of α based on an i.i.d. sampleX1, . . . , Xn

from fX . Show that α̂n exists, is unique, and is the solution of the equation

1 + 2α̂n
α̂n + α̂2

n

= − 1

n

n∑
i=1

logXi.

Solution: Since the sample is iid, the log-likelihood function is

logL(X1, . . . , Xn;α) = log
n∏
i=1

fX(Xi) = n log(α+α2)+(α−1)
n∑
i=1

logXi+
n∑
i=1

log(1−Xi).

Differentiate the log-likelihood to get

d

dα
logL(X1, . . . , Xn;α) = n

1 + 2α

α + α2
+

n∑
i=1

logXi.
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Now α̂n is the zero of the right-hand side, provided it exists, is unique, and is a max-
imizer. To check this, just observe that h(α) := 1+2α

α+α2 = 1/α + 1/(α + 1) satisfies
limα↓0 h(α) = ∞, limα→∞ h(α) = 0, and is decreasing. So there exists only one value
such that h(α) = −1/n

∑
logXi and this is a maximizer because the log-likehood is

strictly concave (its second derivative is h′(α) < 0).

d) Show that the maximum likelihood estimator is consistent.

Solution: By the WLLN and part b), we have

lim
n→∞

− 1

n

n∑
i=1

logXi = E(− logX1) =
1 + 2α

α + α2
,

where the limit is in probability. Let

g(u) :=
2− u+

√
4 + u2

2u
, u > 0,

be the inverse of h(α) := 1+2α
α+α2 , α > 0. Then, in view of part c),

lim
n→∞

α̂n = lim
n→∞

g

(
− 1

n

n∑
i=1

logXi

)
= g

(
1 + 2α

α + α2

)
= α,

where the limits are in probability. Thus the estimator is consistent. Remark: The
SLLN, and hence WLLN, is applicable since E(− logX1) < ∞ by part b), as is men-
tioned after the proof of Satz 4.2 in the Script. In order to apply Satz 4.2 itself,
or some other result in the Script like Equation (4.2), one would have to show that
E((logX1)

2) <∞. This is however not required for full credit on this problem.
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4. (15 points) Let X1, X2, . . . be i.i.d. Exponential(λ) for some fixed λ > 0, and consider the
maxima Mn = max(X1, . . . , Xn) for each n.

a) Show that P(Mn ≤ x) = (1− e−λx)n for x ≥ 0.

Solution: Note that

{Mn ≤ x} = {X1 ≤ x} ∩ {X2 ≤ x} ∩ · · · ∩ {Xn ≤ x}.

Thus by the i.i.d. property,

P(Mn ≤ x) = P(X1 ≤ x)n = (1− e−λx)n.

b) Show that the distribution of λMn− log n converges weakly to the Gumbel distribution,
whose distribution function is F (x) = e−e

−x
, x ∈ R.

Solution: For any x ∈ R and any n such that log n ≥ x,

P(λMn − log n ≤ x) = P
(
Mn ≤

x+ log n

λ

)
=

(
1− 1

n
e−x
)n
→ e−e

−x

= F (x).

as n→∞. This is equivalent to the desired statement.

c) Let (an)n∈N be a positive increasing sequence with limn→∞
logn
an

= c for some c ∈ [0,∞].

Show that limn→∞ a
−1
n Mn = λ−1c in probability.

Solution: We rely on part b). In preparation for this, write

Mn

an
= λ−1

log n

an
+ λ−1

1

an
(λMn − log n) .

The first term on the right-hand side converges to λ−1c by assumption. Thus, we must
show that the second term converges to zero in probability. Pick any ε > 0 and any
δ > 0. Let K > 0 be large enough that 1 − F (K) − F (−K) ≤ δ. Then, for all
n ≥ K/(λε),

P
(∣∣∣∣λ−1 1

an
(λMn − log n)

∣∣∣∣ > ε

)
= P (|λMn − log n| > λεan)

≤ P (|λMn − log n| > K) .

Thus, sending n to infinity and using part b),

lim
n→∞

P
(∣∣∣∣λ−1 1

an
(λMn − log n)

∣∣∣∣ > ε

)
≤ 1− F (K)− F (−K) ≤ δ,

as required.

d) Show that limn→∞Mn =∞ almost surely.

Solution: For any x ≥ 0,
∞∑
n=1

P(Mn ≤ x) =
∞∑
n=1

(1− e−λx)n =
1

1− (1− e−λx)
− 1 = eλx − 1 <∞.

Thus by the Borel-Cantelli lemma, Mn ≤ x holds for at most finitely many n almost
surely. Thus limn→∞Mn ≥ x almost surely. Since x was arbitrary, limn→∞Mn =∞.
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5. (15 points) Define S0 = 0 and Sn =
∑n

i=1Xi for n ≥ 1, where X1, X2, . . . are i.i.d. random
variables with P(Xi = +1) = P(Xi = −1) = 1

2
. Let (Ω,A,P) denote the probability space

on which these objects are defined.

a) Fix any N ∈ N and consider (Sn)n=0,...,N , which is a random walk of length N . For each
n = 0, . . . , N , let An denote the set of all events of the form {ω : (S0(ω), . . . , Sn(ω)) ∈ D}
with D ⊆ Rn measurable. State the definition of a stopping time.

Solution: A map T : Ω→ {0, . . . , N} is called a stopping time if for all n = 0, . . . , N ,

{ω : T (ω) = n} ∈ An.

Recall the following two facts, which you may use later on:

(i) For any stopping time T , one has E(ST ) = 0. Here it is crucial that T ≤ N almost
surely for some deterministic number N .

(ii) For any a ∈ Z, letting Ta = inf{n > 0 : Sn = a} one has limN→∞ P(Ta > N) = 0.

Fix integers a > 0 > b and let Ta,b = inf{n > 0 : Sn = a or Sn = b} denote the first time Sn
hits either a or b. If this never happens, set Ta,b =∞.

b) Show that P(Ta,b <∞) = 1.

Solution: Since Ta ≤ Ta,b and using Fact (ii), one has

P(Ta,b =∞) = lim
N→∞

P(Ta,b > N) ≤ lim
N→∞

P(Ta > N) = 0.

c) Show that E(STa,b) = 0.

Hint: Consider the stopping time T = min(Ta,b, N), apply the above facts about stopping
times, and take limits.

Solution: Since Ta,b is not bounded by any deterministic constant, one cannot directly
use Fact (i). Instead, proceed as follows. For any N ∈ N, note that Ta,b∧N = Ta∧Tb∧N
is a stopping time. Thus

0 = E(STa,b∧N) = E(STa,b1{Ta,b≤N}) + E(SN1{Ta,b>N}).

On the event {Ta,b > N} we have |SN | < a ∧ |b|. Hence∣∣E(SN1{Ta,b>N})
∣∣ ≤ (a ∧ |b|)P(Ta,b > N)→ 0 (N →∞).

Also, since STa,b ∈ {a, b} and Ta,b < ∞ almost surely, the dominated convergence
theorem yields

E(STa,b1{Ta,b≤N})→ E(STa,b) (N →∞).

Putting these facts together yields E(STa,b) = 0.
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d) What is the probability that Sn reaches a before it reaches b?

Solution: Due to part b) one has Ta,b = Ta ∧ Tb <∞. Using also part c) one gets

0 = E(STa,b)

= E(STa1{Ta<Tb}) + E(STb1{Ta>Tb})

= aP(Ta < Tb) + bP(Ta > Tb)

= (a− b)P(Ta < Tb) + b.

Thus

P(Ta < Tb) =
−b
a− b

.
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