Problems and suggested solution
 Part I: Probability Theory
 Question 1

A code consists of any 3 digits chosen randomly between 0 and 4 .
(a) $[1$ Point $]$

Let Ω be the sample space of all such codes. Write down Ω and give its cardinality $|\Omega|$.
Solution:
An elementary event (or particular code) is
$\omega=\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ with $\omega_{i} \in\{0,1,2,3,4\}$ for $i \in\{1,2,3\}$.
Thus, $\Omega=\left\{\left(\omega_{1}, \omega_{2}, \omega_{3}\right): \omega_{i} \in\{0,1,2,3,4\}\right\}=\{0,1,2,3,4\}^{3}$.
$|\Omega|=5^{3}$.

In the following questions b)-d), we assume that the distribution of the codes follows a Laplace model.
(b) [1 Point]

Compute the probability that all the digits are equal.

Solution:

Let E denote this event.
Then $E=\{(0,0,0) ;(1,1,1) ;(2,2,2) ;(3,3,3) ;(4,4,4)\}$.
Under the Laplace model assumption, we have that

$$
\mathbb{P}(E)=\frac{|E|}{|\Omega|}=\frac{5}{5^{3}}=\frac{1}{25} .
$$

(c) [1 Point]

Compute the probability that the $1^{\text {st }}$ and the $3^{\text {rd }}$ digits are equal.

Solution:

Let F denote this event.
Then, $F=\left\{\left(\omega, \omega_{2}, \omega\right):\left(\omega, \omega_{2}\right) \in\{0,1,2,3,4\}\right\}$ with $|F|=5^{2}$.
Hence, $\mathbb{P}(F)=\frac{5^{2}}{5^{3}}=\frac{1}{5}$.
(d) [1 Point]

Compute the probability that the digits are all different.

Solution:

Let G denote this event.
Then, $G=\left\{\left(\omega_{1}, \omega_{2}, \omega_{3}\right): \omega_{i} \in\{0,1,2,3,4\}\right.$ and $\omega_{i} \neq \omega_{j}$ for $\left.i \neq j\right\}$.
Then $|G|=5 \times 4 \times 3$ and
$\mathbb{P}(G)=\frac{|G|}{|\Omega|}=\frac{5 \times 4 \times 3}{5^{3}}=\frac{12}{25}$.

Question 2

In this question, we consider 4 people. We are interested in the days of the week on which they were born. For example, (Monday, Monday, Wednesday, Sunday) is a possible answer when the 4 people are asked about this day of the week. We assume that all such possible answers have the same probability to be given.
(a) $[1$ Point $]$

Write down Ω and give its cardinality $|\Omega|$.

Solution:

$\Omega=\{($ day 1 , day 2 , day 3 , day 4$)$, day $i \in\{$ Mon, Tue, Wed, Thur, Fr, Sat, Sun $\}\}$.
$|\Omega|=7^{4}$.
(b) [1 Point]

Compute the probability that all the 4 people were born on Monday.

Solution:

Let E denote this event.
Then, $E=\{($ Mon, Mon, Mon, Mon $)\}$ and $\mathbb{P}(E)=\frac{|E|}{|\Omega|}=\frac{1}{7^{4}}$.
(c) [1 Point]

Compute the probability that all the 4 people were born on the same day of the week.

Solution:

Let F denote this event.
Then, $F=\{($ Mon, Mon, Mon, Mon), (Tue, Tue, Tue, Tue), ..., (Sun, Sun, Sun, Sun) $\}$. $\mathbb{P}(F)=\frac{|F|}{|\Omega|}=\frac{7}{7^{4}}=\frac{1}{7^{3}}$.
(d) [1 Point]

Compute the probability that the 4 people were born on different days of the week.
Solution:

Let G denote this event.
Then $G=\left\{\left(\right.\right.$ day $_{1}$, day $_{2}$, day $_{3}$, day $\left._{4}\right):$ day $_{i} \neq$ day $_{j}$ if $\left.1 \leq i \neq j \leq 4\right\}$.
$|G|=7 \times 6 \times 5 \times 4$.
Hence, $\mathbb{P}(G)=\frac{|G|}{|\Omega|}=\frac{7 \times 6 \times 5 \times 4}{7^{4}}=\frac{120}{343}$.
(e) $[\mathbf{2}$ Points]

Conclude from d) that the probability that at least 2 people were born on the same day of the week is larger than 0.6.

Solution:

It is clear that the event that at least 2 people were born on the same weekday is G^{c}.
Then $\mathbb{P}\left(G^{c}\right)=1-\mathbb{P}(G)=1-\frac{120}{343}$. Note that $\frac{120}{343}<0.4=\frac{2}{5}$ since $600<343 \times 2$.
Therefore, $\mathbb{P}\left(G^{c}\right)>1-0.4=0.6$.

Question 3

A school teacher has 2 boxes which contain books. We will call these boxes Box $\# 1$ and Box $\# 2$.
Box \#1 contains: 1 English, 2 German and 2 French books.
Box \#2 contains: 2 English, 3 German and 1 French books.
For her reading course, the teacher selects a box and then takes 2 books from this selected box.
In all the questions a)-c), it is assumed that each of the boxes can be selected with the same probability. Also, from each of the boxes, the books can be selected with the same probability.
(a) $[\mathbf{2}$ Points]

Compute the probability that the selected books are French and German books.

Solution:

Let $E=\{$ The selected books are French and German\}.
Let $B_{i}=\{\operatorname{Box} \# i$ is selected $\}, i \in\{1,2\}$.
Then

$$
\mathbb{P}(E)=\mathbb{P}\left(E \mid B_{1}\right) \mathbb{P}\left(B_{1}\right)+\mathbb{P}\left(E \mid B_{2}\right) \mathbb{P}\left(B_{2}\right)=\frac{1}{2}\left(\mathbb{P}\left(E \mid B_{1}\right)+\mathbb{P}\left(E \mid B_{2}\right)\right)
$$

with

$$
\begin{gathered}
\mathbb{P}\left(E \mid B_{1}\right)=\frac{\binom{2}{1} \times\binom{ 2}{1}}{\binom{5}{2}}=\frac{4}{\frac{5!}{3!2!}}=\frac{4}{\frac{5 \times 4}{2}}=\frac{2}{5}, \\
\mathbb{P}\left(E \mid B_{2}\right)=\frac{\binom{1}{1} \times\binom{ 3}{1}}{\binom{6}{2}}=\frac{3}{\frac{6 \times 5}{2}}=\frac{1}{5},
\end{gathered}
$$

$\mathbb{P}(E)=\frac{1}{2} \times \frac{3}{5}=\frac{3}{10}$.
(b) [2 Points]

Compute the probability that the selected books are German books.

Solution:

Let F denote this event.

$$
\begin{gathered}
\mathbb{P}(F)=\frac{1}{2}\left(\mathbb{P}\left(F \mid B_{1}\right)+\mathbb{P}\left(F \mid B_{2}\right)\right) \\
\mathbb{P}\left(F \mid B_{1}\right)=\frac{\binom{2}{2}}{\binom{5}{2}}=\frac{1}{10} . \\
\mathbb{P}\left(F \mid B_{2}\right)=\frac{\binom{3}{2}}{\binom{6}{2}}=\frac{3}{15}=\frac{1}{5} . \\
\mathbb{P}(F)=\frac{1}{2}\left(\frac{1}{10}+\frac{1}{5}\right)=\frac{3}{20} .
\end{gathered}
$$

(c) $[3$ Points $]$

Let $S=\{$ The selected books are of the same language $\}$. Given S, compute the conditional probability that Box \#1 was selected.

Solution:

$$
\begin{aligned}
S=\left\{\left\{\operatorname{Ger}_{1}^{\# 1}, \operatorname{Ger}_{2}^{\# 1}\right\},\left\{\operatorname{Fr}_{1}^{\# 1}, \operatorname{Fr}_{2}^{\# 1}\right\},\right. \\
\left.\left\{\operatorname{Eng}_{1}^{\# 2}, \operatorname{Eng}_{2}^{\# 2}\right\},\left\{\operatorname{Ger}_{1}^{\# 2}, \operatorname{Ger}_{2}^{\# 2}\right\},\left\{\operatorname{Ger}_{1}^{\# 2}, \operatorname{Ger}_{3}^{\# 2}\right\},\left\{\operatorname{Ger}_{2}^{\# 2}, \operatorname{Ger}_{3}^{\# 2}\right\}\right\} \\
\mathbb{P}\left(B_{1} \mid S\right)=\frac{\mathbb{P}\left(S \mid B_{1}\right) \mathbb{P}\left(B_{1}\right)}{\mathbb{P}\left(S \mid B_{1}\right) \mathbb{P}\left(B_{1}\right)+\mathbb{P}\left(S \mid B_{2}\right) \mathbb{P}\left(B_{2}\right)}
\end{aligned}
$$

with

$$
\begin{aligned}
& \mathbb{P}\left(S \mid B_{1}\right)=\frac{\left|\left\{\left\{\operatorname{Ger}_{1}, \operatorname{Ger}_{2}\right\},\left\{\operatorname{Fr}_{1}, \operatorname{Fr}_{2}\right\}\right\}\right|}{\binom{5}{2}}=\frac{2}{\binom{5}{2}}=\frac{1}{5} \\
& \mathbb{P}\left(S \mid B_{2}\right)=\frac{|A|+|B|}{\binom{6}{2}}=\frac{1+\binom{3}{2}}{\binom{6}{2}}=\frac{4}{15}
\end{aligned}
$$

where $A=\left\{\operatorname{Eng}_{1}, \operatorname{Eng}_{2}\right\}, B=\left\{\left\{\operatorname{Ger}_{1}, \operatorname{Ger}_{2}\right\},\left\{\operatorname{Ger}_{1}, \operatorname{Ger}_{3}\right\},\left\{\operatorname{Ger}_{2}, \operatorname{Ger}_{3}\right\}\right\}$.
Thus, $\mathbb{P}\left(B_{1} \mid S\right)=\frac{\frac{1}{5}}{\frac{1}{5}+\frac{4}{15}}=\frac{3}{7}$.

Question 4

Consider two random variables X and Y such that X and Y are independent and $X \sim \operatorname{Pois}(\lambda)$, $Y \sim \operatorname{Pois}(\mu)$ for $\lambda \in(0, \infty)$ and $\mu \in(0, \infty)$.
(a) $[1$ Point $]$

Write down the mathematical definition of independence of X and Y.

Solution:

X and Y are independent if for all $x, y \in \mathbb{N}_{0}$ we have

$$
\mathbb{P}(X=x, Y=y)=\mathbb{P}(X=x) \mathbb{P}(Y=y) .
$$

(b) [2 Points]

Let $S=X+Y$. Show that S has a Poisson distribution and determine its parameter.

Solution:

Let $s \in \mathbb{N}_{0}$.

$$
\begin{aligned}
\mathbb{P}(S=s) & =\mathbb{P}(X+Y=s) \\
& =\sum_{x=0}^{s} \mathbb{P}(X=x, Y=s-x) \\
& =\sum_{x=0}^{s} \mathbb{P}(X=x) \mathbb{P}(Y=s-x) \\
& =\sum_{x=0}^{s} \frac{\lambda^{x} e^{-\lambda}}{x!} \frac{\mu^{s-x} e^{-\mu}}{(s-x)!} \\
& =\frac{e^{-\lambda-\mu}}{s!} \sum_{x=0}^{s} \lambda^{x} \mu^{s-x}\binom{s}{x} \\
& =\frac{e^{-\lambda-\mu}}{s!}(\lambda+\mu)^{s} .
\end{aligned}
$$

Thus, $S \sim \operatorname{Pois}(\lambda+\mu)$.
(c) $[\mathbf{2 ~ P o i n t s] ~}$

Fix $s \in \mathbb{N}_{0}$. Determine the conditional distribution of X given the event $\{S=s\}$, that is, determine $\mathbb{P}(X=x \mid S=s), x \in \mathbb{N}_{0}$.

Solution:

For $x \in \mathbb{N}_{0}$, we have that

$$
\mathbb{P}(X=x \mid S=s)=\frac{\mathbb{P}(X=x, S=s)}{\mathbb{P}(S=s)}= \begin{cases}0 & \text { if } x>s \\ \frac{\mathbb{P}(X=x, Y=s-x)}{\mathbb{P}(S=s)} & \text { if } x \leq s\end{cases}
$$

$$
\begin{aligned}
\frac{\mathbb{P}(X=x, Y=s-x)}{\mathbb{P}(S=s)} & =\frac{\mathbb{P}(X=x) \mathbb{P}(Y=s-x)}{\mathbb{P}(S=s)} \\
& =\frac{\frac{\lambda^{x} e^{-\lambda}}{x!} \frac{\mu^{s-x} e^{-\mu}}{(s-x)!}}{\frac{(\lambda+\mu)^{s} e^{-\lambda-\mu}}{s!}} \\
& =\left(\frac{\lambda}{\lambda+\mu}\right)^{x}\left(\frac{\mu}{\lambda+\mu}\right)^{s-x}\binom{s}{x} .
\end{aligned}
$$

Thus, $\mathbb{P}(X=x \mid S=s)=\binom{s}{x} p^{x}(1-p)^{s-x} \mathbb{1}_{\{0 \leq x \leq s\}}$ with $p=\frac{\lambda}{\lambda+\mu}$.
This means that $X \left\lvert\, S=s \sim \operatorname{Bin}\left(s, \frac{\lambda}{\lambda+\mu}\right)\right.$.
(d) $[2$ Points]

Give $\mathbb{E}(X \mid S=s)$ and deduce $\mathbb{E}(X \mid S)$.

Solution:

$$
\mathbb{E}(X \mid S=s)=\frac{\lambda}{\lambda+\mu} s . \mathbb{E}(X \mid S)=\frac{\lambda}{\lambda+\mu} S .
$$

(e) [2 Points]

If $\lambda=\mu$, determine $\mathbb{E}(X \mid S)$ using only the symmetry in the problem and the properties of conditional expectation.

Solution:

$$
\text { If } \lambda=\mu, \mathbb{E}(X \mid S)=\mathbb{E}(Y \mid S) \text {. Hence, } S=\mathbb{E}((X+Y) \mid S)=2 \mathbb{E}(X \mid S) \Rightarrow \mathbb{E}(X \mid S)=S / 2
$$

Question 5

Consider a sequence of random variables $\left(X_{n}\right)_{n \geq 1}$ such that

$$
\mathbb{P}\left(X_{n}=0\right)=1-\frac{1}{n^{2}} \quad \text { and } \quad \mathbb{P}\left(X_{n}=n^{\alpha}\right)=\frac{1}{n^{2}}
$$

for some $\alpha>0$.
(a) $[1$ Point $]$

Recall the definition of convergence in probability of some sequence of random variables $\left(X_{n}\right)_{n \geq 1}$ to a random variable X.

Solution:

$$
X_{n} \xrightarrow{\mathbb{P}} X \text { if } \forall \varepsilon>0 \lim _{n \rightarrow \infty} \mathbb{P}\left(\left|X_{n}-X\right|>\varepsilon\right)=0 .
$$

(b) [1 Point]

Show that the sequence $\left(X_{n}\right)_{n \geq 1}$ converges to 0 in probability.

Solution:

Fix $\varepsilon>0$. For $n>\varepsilon^{1 / \alpha}$ we have that

$$
\left\{X_{n}>\varepsilon\right\}=\left\{X_{n}=n^{\alpha}\right\} .
$$

Hence, $\mathbb{P}\left(\left|X_{n}-0\right|>\varepsilon\right)=\mathbb{P}\left(X_{n}=n^{\alpha}\right)=\frac{1}{n^{2}} \searrow 0$ as $n \rightarrow \infty$.
(c) [1 Point]

For $r>0$, show that $\lim _{n \rightarrow \infty} \mathbb{E}\left(X_{n}^{r}\right)=0$ if and only if $r<\frac{2}{\alpha}$.

Solution:

$$
\mathbb{E}\left(X_{n}^{r}\right)=\left(1-\frac{1}{n^{2}}\right) \cdot 0+\frac{1}{n^{2}} \cdot n^{\alpha \cdot r}=n^{\alpha \cdot r-2} \searrow 0 \text { as } n \rightarrow \infty \text { iff } \alpha \cdot r<2 .
$$

(d) [2 Points]

Does $\left(X_{n}\right)_{n \geq 1}$ converge to 0 almost surely? Justify your answer.

Solution:

Fix $\varepsilon>0$. Then

$$
\begin{aligned}
\sum_{n: n>\varepsilon^{1 / \alpha}} \mathbb{P}\left(\left|X_{n}-0\right|>\varepsilon\right) & =\sum_{n: n>\varepsilon^{1 / \alpha}} \mathbb{P}\left(X_{n}=n^{\alpha}\right) \\
& =\sum_{n: n>\varepsilon^{1 / \alpha}} \frac{1}{n^{2}}<\infty .
\end{aligned}
$$

By the result in the lecture, we conclude that $X_{n} \xrightarrow{\text { a.s. }} 0$.

Question 6

The 2-dimensional movement in a unit square of some particle is random. The random position (X, Y) of the particle has a joint distribution that admits the density

$$
f(x, y)=c x^{2} y \mathbb{1}_{\{0 \leq x \leq 1,0 \leq y \leq 1\}}
$$

with respect to Lebesgue measure on $\mathcal{B}_{\mathbb{R}^{2}}$ (the Borel σ-algebra on \mathbb{R}^{2}), for some $c>0$.
(a) [1 Point]

Determine c.

Solution:

We must have

$$
\iint_{R^{2}} f(x, y) d x d y=1
$$

and hence $c=\frac{1}{\iint_{[0,1]^{2}} x^{2} y d x d y}$.

$$
\iint_{[0,1]^{2}} x^{2} y d x d y=\left(\int_{0}^{1} x^{2} d x\right)\left(\int_{0}^{1} y d y\right)=\frac{1}{3} \cdot \frac{1}{2}=\frac{1}{6} .
$$

Thus, $c=6$.
(b) [2 Points]

Compute the marginal densities of X and Y, respectively.
Are X and Y independent? Justify your answer.

Solution:

$$
\begin{aligned}
f_{X}(x) & =\int_{\mathbb{R}} f(x, y) d y=6\left(\int_{0}^{1} x^{2} y d y\right) \mathbb{1}_{\{0 \leq x \leq 1\}}=3 x^{2} \mathbb{1}_{\{0 \leq x \leq 1\}} . \\
f_{Y}(y) & =\int_{\mathbb{R}} f(x, y) d x=6\left(\int_{0}^{1} x^{2} y d x\right) \mathbb{1}_{\{0 \leq y \leq 1\}}=2 y \mathbb{1}_{\{0 \leq y \leq 1\}} .
\end{aligned}
$$

Since $f(x, y)=f_{X}(x) f_{Y}(y) \quad \forall(x, y) \in \mathbb{R}^{2}$, we conclude that X and Y are independent.
(c) [2 Points]

Compute $\mathbb{P}\left(X \leq \frac{1}{2}\right)$ and $\mathbb{P}\left(\max (X, Y) \leq \frac{1}{2}\right)$.

Solution:

$$
\begin{aligned}
& \mathbb{P}\left(X \leq \frac{1}{2}\right)=3 \int_{0}^{\frac{1}{2}} x^{2} d x=\left.x^{3}\right|_{0} ^{\frac{1}{2}}=\frac{1}{8}, \\
& \mathbb{P}\left(\max (X, Y) \leq \frac{1}{2}\right)=\mathbb{P}\left(X \leq \frac{1}{2}, Y \leq \frac{1}{2}\right)=\mathbb{P}\left(X \leq \frac{1}{2}\right) \mathbb{P}\left(Y \leq \frac{1}{2}\right), \\
& \mathbb{P}\left(Y \leq \frac{1}{2}\right)=\int_{0}^{\frac{1}{2}} 2 y d y=\left.y^{2}\right|_{0} ^{\frac{1}{2}}=\frac{1}{4}, \\
& \Rightarrow \mathbb{P}\left(\max (X, Y) \leq \frac{1}{2}\right)=\frac{1}{8} \cdot \frac{1}{4}=\frac{1}{32} .
\end{aligned}
$$

(d) $[2$ Points $]$

Suppose that the particle can only move in the lower triangle $\{0 \leq y \leq x \leq 1\}$ and the density of the random position is

$$
f(x, y)=c^{\prime} x^{2} y \mathbb{1}_{\{0 \leq y \leq x \leq 1\}}
$$

for some $c^{\prime}>0$. Determine c^{\prime}.

Solution:

$$
\begin{aligned}
\iint x^{2} y \mathbb{1}_{\{0 \leq y \leq x \leq 1\}} d x d y & =\int_{0}^{1}\left(\int_{0}^{x} y d y\right) x^{2} d x \\
& =\int_{0}^{1} \frac{x^{2}}{2} x^{2} d x=\frac{1}{2} \int_{0}^{1} x^{4} d x=\frac{1}{10} .
\end{aligned}
$$

Thus, $c^{\prime}=10$.

Part II: Statistics Question 7

The number of people coming to a restaurant between 12:00 and 14:00 is assumed to have a Poisson distribution with some (unknown) rate $\lambda_{0}>0$. We observe X_{1}, \ldots, X_{n} i.i.d. random variables from this distribution.
(a) [3 Points]

Write down the log-likelihood function based on the random sample $\mathbb{X}=\left(X_{1}, \ldots, X_{n}\right)$ and find the MLE of λ_{0}.

Solution:

We have

$$
\begin{aligned}
L_{\mathbb{X}}(\lambda) & =\prod_{i=1}^{n} \frac{e^{-\lambda} \lambda^{X_{i}}}{X_{i}!} \\
& =\frac{e^{-n \lambda} \lambda \sum_{i=1}^{n} X_{i}}{\prod_{i=1}^{n} X_{i}!}, \quad \lambda>0 .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
l_{\mathbb{X}}(\lambda) & =\log \left(L_{\mathbb{X}}(\lambda)\right) \\
& =-n \lambda+\log (\lambda) \sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} \log \left(X_{i}!\right) \\
l_{\mathbb{X}}^{\prime}(\lambda) & =-n+\frac{1}{\lambda} \sum_{i=1}^{n} X_{i}=0 \Longleftrightarrow \lambda=\bar{X}_{n}
\end{aligned}
$$

$l_{\mathbb{X}}$ is strictly concave $\left(\lambda \mapsto-n \lambda\right.$ is linear and $\lambda \mapsto \log (\lambda)$ is strictly concave) and hence \bar{X}_{n} is the global maximizer of $l(\mathbb{X})$. In other words, the MLE is \bar{X}_{n}.
(b) $[1$ Point $]$

Write down the CLT for \bar{X}_{n}.

Solution:

Since $\mathbb{E}\left(X_{i}\right)=\lambda_{0}$ and $\mathbb{V}\left(X_{i}\right)=\lambda_{0}$, we have that $\sqrt{n}\left(\bar{X}_{n}-\lambda_{0}\right) \xrightarrow{d} \mathcal{N}\left(0, \lambda_{0}\right)$.
(c) [3 Points]

Using the relevant theorems, show that

$$
\frac{\sqrt{n}\left(\bar{X}_{n}-\lambda_{0}\right)}{h\left(\bar{X}_{n}\right)} \xrightarrow{d} \mathcal{N}(0,1)
$$

for some function h on $(0, \infty)$ and specify the function h.

Solution:

We have $\frac{\sqrt{n}\left(\bar{X}_{n}-\lambda_{0}\right)}{\sqrt{\lambda_{0}}} \xrightarrow{d} \mathcal{N}(0,1)$.

$$
\frac{\sqrt{n}\left(\bar{X}_{n}-\lambda_{0}\right)}{\sqrt{\bar{X}_{n}}}=\frac{\sqrt{n}\left(\bar{X}_{n}-\lambda_{0}\right)}{\sqrt{\lambda_{0}}} \sqrt{\frac{\lambda_{0}}{\bar{X}_{n}}} .
$$

Define $f(x)=\sqrt{\frac{\lambda_{0}}{x}}$ on $(0, \infty)$. Since f is continuous, it follows from the WLLN and the continuous mapping theorem that $\sqrt{\frac{\lambda_{0}}{X_{n}}} \xrightarrow{\mathbb{P}} 1$.
By the Slutsky's Theorem,

$$
\frac{\sqrt{n}\left(\bar{X}_{n}-\lambda_{0}\right)}{\sqrt{\bar{X}_{n}}} \xrightarrow{d} \mathcal{N}(0,1) .
$$

(d) [2 Points]

Deduce from c) a two-sided and symmetric confidence interval for λ_{0} with asymptotic level α, $\alpha \in(0,1)$.

Solution:

$$
\left[\bar{X}_{n}-\frac{z_{1-\alpha / 2} \sqrt{\bar{X}_{n}}}{\sqrt{n}}, \bar{X}_{n}+\frac{z_{1-\alpha / 2} \sqrt{\bar{X}_{n}}}{\sqrt{n}}\right]
$$

with $z_{1-\alpha / 2}$, the $(1-\alpha / 2)$ - quantile of $\mathcal{N}(0,1)$.

Question 8

The delay of some train is a random variable which we denote here by T. We assume that T admits an absolutely continuous distribution with density which belongs to the parametric family

$$
\left\{p_{\theta}(t)=\frac{2(\theta-t)}{\theta^{2}} \mathbb{1}_{t \in[0, \theta]}, \quad \theta \in(0, \infty)\right\}
$$

(a) [2 Points]

For a positive integer $k \in \mathbb{N}$, show that

$$
\mathbb{E}_{\theta}\left(T^{k}\right)=\frac{2 \theta^{k}}{(k+1)(k+2)}
$$

Solution:

$$
\begin{aligned}
\mathbb{E}_{\theta}\left(T^{k}\right) & =\int_{\mathbb{R}} t^{k} p_{\theta}(t) d t \\
& =\frac{2}{\theta^{2}} \int_{0}^{\theta} t^{k}(\theta-t) d t \\
& =\frac{2}{\theta^{2}}\left(\theta \cdot \frac{\theta^{k+1}}{k+1}-\frac{\theta^{k+2}}{k+2}\right) \\
& =2 \theta^{k} \frac{k+2-(k+1)}{(k+1)(k+2)} \\
& =\frac{2 \theta^{k}}{(k+1)(k+2)}
\end{aligned}
$$

(b) [2 Points]

Deduce from a) the expectation and variance of T when $T \sim p_{\theta}$.

Solution:

$$
\begin{aligned}
\mathbb{E}_{\theta}(T) & =\frac{2 \theta}{2 \cdot 3}=\frac{\theta}{3} . \\
\mathbb{V}_{\theta}(T) & =\mathbb{E}_{\theta}\left(T^{2}\right)-\left(\mathbb{E}_{\theta}(T)\right)^{2} \\
& =\frac{2 \theta^{2}}{3 \cdot 4}-\frac{\theta^{2}}{9} \\
& =\frac{\theta^{2}}{6}-\frac{\theta^{2}}{9}=\frac{\theta^{2}}{18} .
\end{aligned}
$$

(c) $[\mathbf{2 ~ P o i n t s}]$

Let T_{1}, \ldots, T_{n} be i.i.d. delays of this train. We denote by θ_{0} the true unknown parameter.
Determine $\hat{\theta}_{n}$ the moment estimator of θ_{0} based on the observed delays.

Solution:

$$
\mathbb{E}_{\theta}(T)=\frac{\theta}{3} \Longrightarrow \bar{X}_{n}=\frac{\hat{\theta}_{n}}{3} \Longrightarrow \hat{\theta}_{n}=3 \bar{X}_{n}
$$

(d) [2 Points]

Recall the CLT for $\bar{T}_{n}=\frac{1}{n} \sum_{i=1}^{n} T_{i}$ and show that it implies that $\forall z \in \mathbb{R}$

$$
\mathbb{P}_{\theta_{0}}\left(\sum_{i=1}^{n} T_{i}>\frac{\theta_{0} z}{3 \sqrt{2}} \sqrt{n}+\frac{\theta_{0}}{3} n\right) \xrightarrow[n \rightarrow \infty]{ } \frac{1}{\sqrt{2 \pi}} \int_{z}^{+\infty} e^{-\frac{x^{2}}{2}} d x .
$$

Solution:

By the CLT,

$$
\frac{\sqrt{n}\left(\bar{T}_{n}-\frac{\theta_{0}}{3}\right)}{\sqrt{\frac{\theta_{0}^{2}}{18}}} \xrightarrow{d} \mathcal{N}(0,1),
$$

which means $\forall z \in \mathbb{R} \quad \mathbb{P}_{\theta_{0}}\left(\frac{\sqrt{n}\left(\bar{T}_{n}-\frac{\theta_{0}}{3}\right)}{\frac{\theta_{0}}{3 \sqrt{2}}} \leq z\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} \frac{1}{\sqrt{2} \pi} \int_{-\infty}^{z} e^{-\frac{x^{2}}{2}} d x$.
$\Rightarrow \forall z \in \mathbb{R} \quad \mathbb{P}_{\theta_{0}}\left(\frac{\sqrt{n}\left(\bar{T}_{n}-\frac{\theta_{0}}{3}\right)}{\frac{\theta_{0}}{3 \sqrt{2}}}>z\right)=1-\mathbb{P}_{\theta_{0}}\left(\frac{\sqrt{n}\left(\bar{T}_{n}-\frac{\theta_{0}}{3}\right)}{\frac{\theta_{0}}{3 \sqrt{2}}} \leq z\right) \xrightarrow[n \rightarrow \infty]{ } \frac{1}{\sqrt{2} \pi} \int_{z}^{+\infty} e^{-\frac{x^{2}}{2}} d x$
Note that

$$
\frac{\sqrt{n}\left(\bar{T}_{n}-\frac{\theta_{0}}{3}\right)}{\frac{\theta_{0}}{3 \sqrt{2}}}=\frac{1}{\sqrt{n}} \frac{\sum_{i=1}^{n} T_{i}-\frac{\theta_{0} n}{3}}{\frac{\theta_{0}}{3 \sqrt{2}}}
$$

and hence $\frac{\sqrt{n}\left(\bar{T}_{n}-\frac{\theta_{0}}{3}\right)}{\frac{\theta_{0}}{3 \sqrt{2}}}>z \Longleftrightarrow \sum_{i=1}^{n} T_{i}>\frac{\sqrt{n} \theta_{0}}{3 \sqrt{2}} z+\frac{\theta_{0} n}{3}$
from which we conclude the claim.
(e) $[2$ Points $]$

In this question, we assume that $\theta_{0}=9$ (minutes), and that the number of working days in a month of an employee who takes this train is 20 .
Show that the probability that the employee loses in a month more than 1 hour because of the train delay is approximately $\frac{1}{2}$. (We assume that $n=20$ is big enough for the convergence in d) to hold).

Solution:

$$
\text { With } z=0, \mathbb{P}_{\theta_{0}}\left(\sum_{i=1}^{20} T_{i}>60\right) \approx \frac{1}{2}(60 \min =1 \text { hour })
$$

Question 9

Let X denote either a random variable or a random sample. We assume that X admits a distribution that has a density p with respect to a σ-finite dominating measure μ.

Consider the problem of testing

$$
\begin{equation*}
H_{0}: p=p_{0} \quad \text { versus } \quad H_{1}: p=p_{1} \tag{*}
\end{equation*}
$$

for some given densities p_{0} and p_{1} such that $p_{0} \neq p_{1}$.

(a) $[1$ Point $]$

Recall the definition of a UMP test of level $\alpha \in(0,1)$ for the testing problem in (\star).

Solution:

The UMP test of level α is given by

$$
\phi: \mathcal{X} \rightarrow[0,1] \quad(\mathcal{X}=X(\Omega))
$$

is a UMP test of level α if $\mathbb{E}_{p_{0}}[\phi(X)] \leq \alpha$ and if for any other test $\tilde{\phi}: \mathcal{X} \rightarrow[0,1]$ such that $\mathbb{E}_{p_{0}}[\tilde{\phi}(X)] \leq \alpha$ we have that

$$
\mathbb{E}_{p_{1}}[\tilde{\phi}(X)] \leq \mathbb{E}_{p_{1}}[\phi(X)]
$$

(b) [2 Points]

Give the Neyman-Pearson test of level α for the problem in (\star) by specifying all the quantities on which it depends.

Solution:

The NP-test of level α is given by

$$
\phi_{N P}(X)= \begin{cases}1 & \text { if } \frac{p_{1}(X)}{p_{0}(X)}>k_{\alpha} \\ q_{\alpha} & \text { if } \frac{p_{1}(X)}{p_{0}(X)}=k_{\alpha} \\ 0 & \text { if } \frac{p_{1}(X)}{p_{0}(X)}<k_{\alpha}\end{cases}
$$

where k_{α} is the $(1-\alpha)$-quantile of the distribution of $\frac{p_{1}(X)}{p_{0}(X)}$ under H_{0} and $q_{\alpha} \in[0,1]$ is such that $\mathbb{E}_{p_{0}}\left[\phi_{N P}(X)\right]=\alpha$ that is

$$
\mathbb{P}_{p_{0}}\left(\frac{p_{1}(X)}{p_{0}(X)}>k_{\alpha}\right)+q_{\alpha} \mathbb{P}_{p_{0}}\left(\frac{p_{1}(X)}{p_{0}(X)}=k_{\alpha}\right)=\alpha .
$$

(c) $[\mathbf{2 ~ P o i n t s] ~}$

Show that the Neyman-Pearson test is UMP of level α.

Solution:

Let $\tilde{\phi}$ be another test of level α.

$$
\begin{aligned}
& \int\left(\phi_{N P}(x)-\tilde{\phi}(x)\right)\left(p_{1}(x)-k_{\alpha} p_{0}(x)\right) d \mu(x) \\
& =\int_{p_{1}>k_{\alpha} p_{0}}(1-\tilde{\phi}(x))\left(p_{1}(x)-k_{\alpha} p_{0}(x)\right) d \mu(x)+ \\
& \int_{p_{1}<k_{\alpha} p_{0}}(-\tilde{\phi}(x))\left(p_{1}(x)-k_{\alpha} p_{0}(x)\right) d \mu(x) \geq 0 .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \int\left(\phi_{N P}(x)-\tilde{\phi}(x)\right) p_{1}(x) d \mu(x) \geq k_{\alpha} \int\left(\phi_{N P}(x)-\tilde{\phi}(x)\right) p_{0}(x) d \mu(x) . \\
& \mathbb{E}_{p_{1}}\left[\phi_{N P}(X)\right]-\mathbb{E}_{p_{1}}[\tilde{\phi}(X)] \geq k_{\alpha}\left(\mathbb{E}_{p_{0}}\left[\phi_{N P}(X)\right]-\mathbb{E}_{p_{0}}[\tilde{\phi}(X)]\right)=k_{\alpha}\left(\alpha-\mathbb{E}_{p_{0}}[\tilde{\phi}(X)]\right) \geq 0 . \\
& \Longleftrightarrow \mathbb{E}_{p_{1}}\left[\phi_{N P}(X)\right] \geq \mathbb{E}_{p_{1}}[\tilde{\phi}(X)] .
\end{aligned}
$$

Question 10

Let X_{1}, \ldots, X_{n} be i.i.d. $\sim \mathcal{N}\left(\theta, \sigma^{2}\right)$ for $\left(\theta, \sigma^{2}\right) \in \Theta=\mathbb{R} \times(0, \infty)$.
We want to test

$$
H_{0}: \theta=0 \quad \text { versus } \quad H_{1}: \theta \neq 0 .
$$

(a) [1 Point]

If $\sigma=\sigma_{0}$ is known, construct a suitable test of level α.

Solution:

$$
\phi\left(X_{1}, \ldots, X_{n}\right)=\mathbb{1}_{\frac{\sqrt{n}\left|\bar{X}_{n}\right|}{\sigma_{0}}>z_{1-\frac{\alpha}{2}}}
$$

where $z_{1-\frac{\alpha}{2}}$ is the $\left(1-\frac{\alpha}{2}\right)$ - quantile of $\mathcal{N}(0,1)$.
(b) [1 Point]

If σ is not known, construct a suitable test of level α.

Solution:

$$
\phi\left(X_{1}, \ldots, X_{n}\right)=\mathbb{1}_{\frac{\sqrt{n}\left|\bar{X}_{n}\right|}{S_{n}}>t_{n-1,1-\frac{\alpha}{2}}}
$$

where $S_{n}=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}}$, and $t_{n-1,1-\frac{\alpha}{2}}$ is the $\left(1-\frac{\alpha}{2}\right)$ - quantile of \mathcal{T}_{n-1}.
(c) $[1$ Point $]$

If $H_{1}: \theta>0$ and $\sigma=\sigma_{0}$ is known, construct a suitable test of level α.

Solution:

$$
\phi\left(X_{1}, \ldots, X_{n}\right)=\mathbb{1}_{\frac{\sqrt{n} \bar{X}_{n}}{\sigma_{0}}>z_{1-\alpha}}
$$

where $z_{1-\alpha}$ is the $(1-\alpha)$ - quantile of $\mathcal{N}(0,1)$.

