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1. (10 points) Let X and Y have a continuous distribution with joint p.d.f.

f(x, y) = c

{
2x+ y for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2 ,

0 otherwise .

for some constant c. Compute the value of c and the covariance Cov(X, Y ).

Solution
The marginal density function of X is

fX(x) =

∫
R
f(x, y) dy = c

{
4x+ 2 for 0 ≤ x ≤ 1 ,

0 otherwise .

Since the constant c making fX a p.d.f. should satisfies∫
R
fX(x)dx = 1.

We have c = 1/4.

E[X] =

∫
R
xfX(x) dx = c

∫ 1

0

4x2 + 2x dx =
7

12
.

Similarly we have

fY (y) =

∫
R
f(x, y) dx = c

{
y + 1 for 0 ≤ y ≤ 2 ,

0 otherwise .

Hence

E[Y ] =

∫
R
yfY (y) dx = c

∫ 2

0

y2 + y dy =
7

6
.

Also,

E[XY ] =

∫
R
xyf(x, y) dx dy

= c

∫ 2

0

∫ 1

0

2x2y + xy2 dx dy

= c

∫ 2

0

2y

3
+
y2

2
dy

=
2

3
.

Hence

Cov(X, Y ) = E[XY ]− E[X]E[Y ] = − 1

72
.
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2. (12 points) We are interested in studying the probability of success of a student at an
entrance exam to two departments of a university. Consider the following events

A = {The student is man},
Ac = {The student is woman},
B = {The student applied for department I},
Bc = {The student applied for department II},
C = {The student was accepted},
Cc = {The student wasn’t accepted}.

We assume that we have the following probabilities (Berkeley 1973):

P (A) = 0.73,

P (B | A) = 0.69, P (B | Ac) = 0.24,

P (C | A ∩B) = 0.62, P (C | Ac ∩B) = 0.82, P (C | A ∩Bc) = 0.06, P (C | Ac ∩Bc) = 0.07.

(a) (9 points) Compute the probabilities P[C|A], P[C|Ac].
(b) (3 points) Do you think that in this examination women are disadvantaged?

Solution

(a) Just computing

P[C|Ac] =
P[C ∩ Ac]
P[Ac]

=
P[C ∩ Ac ∩B] + P[C ∩ Ac ∩Bc]

P[Ac]

=
0.82 · 0.27 · 0.24 + 0.07 · 0.27 · 0.76

0.27
∼ 0.25,

and

P[C|A] =
P[C ∩ A]

P[Ac]
=

P[C ∩ A ∩B] + P[C ∩ A ∩Bc]

P[A]

=
0.62 · 0.69 · 0.73 + 0.06 · 0.31 · 0.73

0.73
∼ 0.45.

This shows that the percentage of women accepted are less than that of the men.

(b) The probability of being accepted, given than you are a woman who postulated at
the department I is P (C | Ac∩B) = 0.82. That value is bigger than the probability
of being accepted, given than you are a man who postulated at the department
I, P(C | A ∩ B) = 0.62. This indicates that in department I females are not
disadvantaged.

The probability of being accepted, given than you are a woman who postulated to
the department is P (C | Ac ∩Bc) = 0.07. This value is bigger than the probability
of being accepted given than you are a man who postulated at the department II
P(C | A ∩ Bc) = 0.06. This indicates that in department II females are neither
disadvantaged.

The result of (a) is not explained by the gender, but much more but the fact that
women apply to the department with bigger rejection rate.
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3. (10 points) Let X be a random variable with uniform distribution on [0, a].

(a) (6 points) Compute
P(X ≥ c |X ≥ b) for b < c < a.

(b) (4 points) Compute
E [X |X ≥ b] .

Solution

(a) By definition of conditional probability,

P(X ≥ c |X ≥ b) =
P(X ≥ c,X ≥ b)

P(X ≥ b)
=

P(X ≥ c)

P(X ≥ b)
=
a− c
a− b

.

Thus conditioning on X ≥ b, X is distributed as the uniform random variable on
[b, a].

(b) The uniform random variable on [b, a] has expectation (a+ b)/2, thus

E [X |X ≥ b] = (a+ b)/2.



Probability and Statistics Second Session Exam - Page 5 of 18 07.02.2017

4. (12 points) A random sample of n items is to be taken from a distribution with mean µ
and standard deviation σ.

(a) (5 points) Use the Chebyshev inequality to determine the smallest number of items
n that must be taken in order to satisfy the following relation:

P
(
|Xn − µ| ≤

σ

3

)
≥ 0.90 where Xn =

1

n

n∑
i=1

Xi.

(b) (7 points) Use the central limit theorem to determine the smallest number of items
n that must be taken in order to satisfy the relation in part (a) approximately.

Solution

(a) By taking G(x) = x2 in Chebyshev inequality we have

P
(
|Xn−µ| >

σ

3

)
≤ E[(Xn − µ)2]

(σ/3)2
=

E[(
∑n

i=1(Xi − µ))2]

n2(σ/3)2
=

∑n
i=1 E[(Xi − µ)2]

n2(σ/3)2
=

9

n
,

where in the third step we used the fact that X1, ..., Xn are independent. This
implies

P
(
|Xn − µ| ≤

σ

3

)
≥ 1− 9

n
.

Thus in order to satisfy P(|Xn−µ| ≤ σ/3) ≥ 0.90, it suffice to have 1−9/n ≥ 0.90,
which is n ≥ 90.

(b) Let us denote Zn =
√
n(Xn−µ)/σ. By central limit theorem, the random variable

Zn can be approximated by the standard normal distribution. Let Φ be the c.d.f.
of the standard normal distribution. We have

P
(
|Xn − µ| ≤

σ

3

)
= P

(
|Zn| ≤

√
n

3

)
≈ Φ

(√n
3

)
− Φ

(
−
√
n

3

)
= 2Φ

(√n
3

)
− 1 .

Thus we need Φ
(√

n/3
)
≥ 0.95, which implies n ≥ 25.
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5. (10 points) Let (Xj)j≥1 be a sequence of independent (not identical) random variables

µj := E(Xj).

Assume that there exists c∗ > 0,

lim
n→∞

1

n

n∑
j=1

µj = µ and E(Xj − µj)2 = Var(Xj) ≤ c∗, ∀j.

Prove that Xn := (
∑n

i=1 Xi)/n converges to µ in probability as n tends to infinity.

Solution

Note that E(Xn) = 1
n

∑n
j=1 µj. By independence of (Xi),

Var(Xn) =
1

n2

n∑
i=1

Var(Xi) ≤
c∗

n
.

First let us note that P(|E
(
Xn

)
− µ| ≥ ε/2) = 0 for n ≥ N , then for all n ≥ N

Chebyshev’s and triangular inequality give that for every ε > 0.

P(|Xn − µ| ≥ ε) ≤ P(|Xn − E
(
Xn

)
| ≥ ε/2) + P(|E

(
Xn

)
− µ| ≥ ε/2) ≤ Var(Xn)

ε2
→ 0.
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6. (8 points) A gas station estimates that it takes at least λ minutes for a change of oil.
The actual time varies from costumer to costumer. However, one can assume that this
time will be well represented by an exponential random variable. The random variable
X, therefore, possess the following density function

f(t) = eλ−t1{t≥λ},

i.e. X = λ + Z where Z ∼ Exp(1). The following values were recorded from 10 clients
randomly selected (the time is in minutes):

4.2, 3.1, 3.6, 4.5, 5.1.

Estimate the parameter λ using the estimator of maximum likelihood.

Solution

We have that the likelihood function is given by:

L(X1, ..., Xn, λ) =
n∏
i=1

exp(λ−Xi)1{Xi≥λ},

= exp(nλ−
n∑
i=1

Xi)1{Xi≥λ,∀i},

we note that f(λ) := exp(nλ−
∑n

i=1 Xi) > 0 is increasing, so its maximum is attained at
the maximum point where 1{Xi≥λ,∀i} = 1. Then the point that maximizes the likelihood
is in λ = mini=1,..,n{Xi} = 3.1.
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7. (10 points) Suppose that X = (X1, ..., Xn) form an i.i.d. random sample from the
Bernoulli distribution with parameter Θ, which is unknown (0 < Θ < 1). Suppose
also that the prior distribution of Θ is the Beta distribution with parameters α > 0 and
β > 0. Prove that the posterior distribution of Θ given that x = (x1, . . . , xn) is the Beta
distribution with parameters α +

∑n
i=1 xi and β + n−

∑n
i=1 xi.

Solution

First we calculate the joint p.f. of X1, · · · , Xn,Θ:

fX1,··· ,Xn,Θ(x1, · · · , xn, θ) ∝ θy(1− θ)n−yθα−1(1− θ)β−1

= θα+y−1(1− θ)β+n−y−1

where y = x1 + · · ·+xn. So conditioning on X1, · · · , Xn at (x1, · · · , xn), Θ has the p.d.f.

fθ|x1,··· ,xn(θ) ∝ θα+y−1(1− θ)β+n−y−1

fX1,··· ,Xn(x1, · · · , xn)
∝ θα+y−1(1− θ)β+n−y−1,

where fX1,··· ,Xn is the marginal p.d.f of X1, · · · , Xn which does not depend on θ (by
definition). We see that the posterior distribution of Θ is the Beta distribution with
parameters α + y and β + n− y.
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8. (12 points) We have 2 urns with red and white balls inside. The urn i ∈ {1, 2} has i red
balls and 3− i white ones. We uniformly select an urn and extract with replacement n
times. Define:

Xj :=

{
1 If the j-th ball is red,
0 If the j-th ball is white.

We are interested in the following problem “ Given that you see (Xj)
n
j=1, can you say

from which urn the balls where taken?”

(a) (6 points) Compute P(X1 = 1, X2 = 1). Are X1, X2 independent?

(b) (6 points) For xi ∈ {0, 1}, compute the following probability:

P (The urn chosen is i | X1 = x1, ..., Xn = xn) .

Show that this only depends on the number or red balls, i.e., k =
∑n

i=1 xi.

Solution

(a) Let k =
∑n

j=1 xj the amount of red balls taken out. Then

P (X1 = 1, X2 = 1) = P (X1 = 1, X2 = 1 | Urn 1 is chosen)P (Urn 1 is chosen)

+ P (X1 = 1, X2 = 1 | Urn 2 is chosen)P (Urn 2 is chosen)

=

(
1

3

)2
1

2
+

(
2

3

)2
1

2
=

5

18
.

We have that X1 and X2 are not independent because:

P({X1 = 1}) = P({X2 = 1})
= P ({X1 = 1} | Urn 1 is chosen) + P ({X1 = 1} | Urn 2 is chosen)

=

(
1

3

)
1

2
+

(
2

3

)
1

2
=

1

2
.

And P(X1 = 1, X2 = 1) > P(X1 = 1)P(X2 = 1). This happens because the
first variable gives “information” about which urn we have chosen so it also gives
information about the second variable.

(b) Just by definition:

P (The urn chosen is i | X1 = x1, ..., Xn = xn)

=
P (The urn chosen is i,X1 = x1, ..., Xn = xn)

P (X1 = x1, ..., Xn = xn)

=
P (X1 = x1, ..., Xn = xn | Urn = i) /2∑2
j=1 P (X1 = x1, ..., Xn = xn | Urn = j) /2

=
ik (3− i)n−k

2n−k + 2k
.
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9. (10 points) Suppose that X1, ..., X100 form an i.i.d random sample from the normal dis-
tribution with unknown mean µ and known variance 1, and it is desired to test the
following hypotheses µ0 = 1, i.e.,

H0 : µ = µ0 , H1 : µ 6= µ0 .

Consider a rejection region,
R =

{
Xn 6∈ [c1, c2]

}
,

where Xn = (
∑n

i=1 Xi)/n and the constants c1 < c2 to be determined by you. We reject
the hypothesis H0 if the observation is in the rejection region R. Let

π(µ) := P(R |µ) = probability of rejection if the mean is equal to µ.

Determine the values of the constants c1 < c2 so that π(1) = 0.02 and the function π(µ)
is symmetric with respect around the point µ = 1.

Solution

Given that the mean of Xi is µ, Xn is normal with mean µ and variance 1/n, hence
Y :=

√
n(Xn − µ) is standard normal. The function Φ is the c.d.f. of Y .

R = {Y /∈ [
√
n(c1 − µ),

√
n(c2 − µ)]},

thus
π(µ) = Φ(

√
n(c1 − µ)) + 1− Φ(

√
n(c2 − µ)).

The function π(µ) is symmetric with respect around the point µ = 1 implies that c2−1 =
1− c1, which also implies that

1− Φ(
√
n(c2 − 1)) = Φ(

√
n(c1 − 1)).

Since π(1) = 0.02, Φ(
√
n(c1− 1)) = 0.01. We find in the formula sheet that Φ−1(0.01) =

−2.33, hence 10(c1 − 1) = −2.33, namely c1 = 0.767, and c2 = 1.233.
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10. (6 points) Let (An)n≥1 be a sequence of events in a probability space. Suppose

∞∑
n=1

P(An) <∞ .

Prove that
P
(∩k∈N ∪n≥kAn) = 0 .

(This is known as the first Borel-Cantelli lemma. )

Solution

Since
∞∑
n=1

P(An) <∞,

lim
k→∞

∞∑
n=k

P(An) = 0.

Thus, we have

P(
⋂
k∈N

⋃
n≥k

An) ≤ P(
⋃
n≥k′

An) ≤
∞∑
n=k′

P(An), ∀k′ ∈ N,

which implies P(
⋂
k∈N
⋃
n≥k An) = 0.
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FORMULAE SHEET

Φ(x) :=
1√
2π

∫ x

−∞
e−z

2/2 dz, x ∈ R.

Let Φ−1 be its inverse function. Then,

Φ−1(0.1) = −1.28, Φ−1(0.05) = −1.6449, Φ−1(0.01) = −2.329.

1. A probability space (Ω,F) is a set Ω and a sigma-algebra F of subsets of Ω. An
element A of F is called an event. A probability measure

P : F → [0, 1],

is a a countably additive, measure.

2. For any disjoint events {Ai}i (i.e., Ai ∩ Aj = ∅ whenever i 6= j),

P
(
∪di=1Ai

)
=

d∑
i=1

P (Ai) .

3. P(A ∪B) = P(A) + P(B)− P(A ∩B).

4. Permutations. Selection of distinct objects with order but without replacement.

Pn,k =
n!

(n− k)!
, 0 ≤ k ≤ n.

5. Combinations. Selection of distinct objects without order and replacement.

Cn,k =
n!

k! (n− k)!
, 0 ≤ k ≤ n.

6. Conditional Probability. A and B are two events with P(B) > 0.

P (A | B) :=
P (A ∩B)

P (B)
.

7. Two events A and B are independent if P(A ∩B) = P(A) P(B).

8. Total Probability Formula. For any partition {Bi}i (i.e., Bi ∩ Bj = ∅ whenever i 6= j
and ∪iBi = Ω),

P (A) =
∑
i

P (A | Bi) P (Bi) .
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9. Bayes Formula. For a partition {Bi}di=1, (see item 8), an event A and an integer
i ∈ {1, . . . , d},

P (Bi | A) =
P (A | Bi) P(Bi)

P (A)
,

and P(A) is calculated by item 8.

10. Random Variable. r.v. X : (Ω,F) → (R,B) is measurable, where B is the set of all
Borel subsets of R.

11. Bernoulli Distribution with success parameter p ∈ (0, 1). X ∈ {0, 1} and

P(X = 1) = p, E(X) = p, V ar(X) = p(1− p).

12. Binomial Distribution with n trials and success parameter p ∈ (0, 1).
X ∈ {0, 1, . . . , n}

P(X = k) = Cn,k p
k(1− p)n−k, k = 0, 1, . . . n,

E(X) = np, V ar(X) = np(1− p).

13. Poisson Distribution with parameter λ > 0. X ∈ {0, 1, . . .}

P(X = k) =
λk

k!
e−λ, k = 0, 1, . . . ,

E(X) = λ, V ar(X) = λ.

14. Infinitely often, i.o. For a given countable sequence of events {Ai}i, the set {Ai i.o.}
is defined by

{Ai i.o.} := ∩∞n=1 ∪∞m=n Am.

15. Borel-Cantelli Lemma 1. Suppose that {Ai}i satisfy∑
i

P(Ai) <∞.

Then, P({Ai i.o.}) = 0.

16. Borel-Cantelli Lemma 2. Suppose that {Ai}i are mutually independent and satisfy∑
i

P(Ai) =∞.

Then, P({Ai i.o.}) = 1.

17. Cumulative Distribution Function c.d.f. For a r.v. X,

FX(x) := P(X ≤ x) = P ({ω ∈ Ω : X(ω) ≤ x}) , x ∈ R.

A c.d.f. FX(x) ∈ [0, 1] and it is non-decreasing, right continuous with left limits.
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18. Probability Density Function p.d.f.

fX(x) :=
d

dx
FX(x), whenever it exists.

A p.d.f. fX is non-negative and

P(X ∈ A) =

∫
A

fX(x) dx, A ∈ B.

In particular,
∫
R fX(x) dx = 1.

19. Joint c.d.f. For two random variables X, Y ,

FX,Y (x, y) := P(X ≤ x and Y ≤ y), x, y ∈ R.

Then,
FX(x) = lim

y↑∞
FX,Y (x, y), and FY (y) = lim

x↑∞
FX,Y (x, y).

20. Joint p.d.f. For two random variables X, Y ,

fX,Y (x, y) :=
∂2

∂x ∂y
FX,Y (x, y) whenever exists.

Then,

fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy, and fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx.

21. Conditional p.d.f. For two random variables X, Y ,

fX|Y (x|y) :=
fX,Y (x, y)

fY (y)
.

22. Independence. Two random variables X, Y are independent (denoted by X ⊥ Y ) if for
every Borel sets A,B, the events {X ∈ A} and {Y ∈ B} are independent.

X ⊥ Y if and only if FX,Y (x, y) = FX(x) FY (y) for every x, y ∈ R.

When a joint p.d.f. exists, X ⊥ Y if and only if fX,Y (x, y) = fX(x) fY (y) for every
x, y ∈ R.

23. Continuous Bayes Theorem. For two random variables X,Θ with a joint p.d.f.,

fΘ|X(θ | x) =
fX|Θ(x | θ) fΘ(θ)

fX(x)
,

and fX(x) is computed by,

fX(x) =

∫ ∞
−∞

fX,Θ(x, θ) dθ =

∫ ∞
−∞

fX|Θ(x|θ) fΘ(θ) dθ.



Probability and Statistics Second Session Exam - Page 15 of 18 07.02.2017

24. Expected Value. X is an r.v.,

E(X) :=

∫
Ω

X(ω) dP(ω), (general),

E(X) :=
∑
i

xi P(X = xi), (discrete),

E(X) :=

∫
R
x fX(x) dx, (when p.d.f. exists).

For a “nice” function g (all bounded, measurable and more),

E[g(X)] =

∫
Ω

g(X(ω)) dP(ω), (general),

E[g(X)] =
∑
i

g(xi) P(X = xi), (discrete),

E[g(X)] =

∫
R
g(x) fX(x) dx, (when p.d.f. exists).

25. Conditional Expected Value. X, Y r.v.’s with a joint p.d.f., for a nice g,

E [g(X) | Y = y] :=

∫ ∞
−∞

g(x) fX|Y (x|y)dx.

26. Variance and Standard Deviation

variance of X = V ar(X) := E[X2]− [E(X)]2 = E
[
(X − E[X])2

]
,

standard deviation of X = σX :=
√
V ar(X).

27. Covariance and Correlation

covariance of X and Y = Cov(X, Y ) := E [(X − E[X]) (Y − E[Y ])] ,

correlation of X and Y = Corr(X, Y ) :=
Cov(X, Y )

σX σY
∈ [−1, 1].

We have
V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X, Y ).

28. Jensen’s Inequality. For a convex function Φ : R→ R,

Φ (E[X]) ≤ E[Φ(X)].

29. Moment Generating Function. For a r.v., X,

Ψ(t) := E
[
etX
]
, t ∈ R.

Ψ(t) could be +∞. When it is finite near the origin,

E
[
Xk

]
=

dk

dtk
Ψ(0).
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30. Exponential Distribution with parameter λ > 0. X ∈ R+ := [0,∞),

fX(x) = λ e−λx, x ≥ 0,

and fX(x) = 0 for all x < 0 and

E(X) =
1

λ
, V ar(X) =

1

λ2
.

31. Gaussian Distribution with mean µ and variance σ2. X ∈ R,

fX(x) :=
1√

2π σ
exp

(
−1

2

(
x− µ
σ

)2
)
, x ∈ R.

Denoted by X ∼ N (µ, σ2). Then,

X ∼ N (µ, σ2) ⇔ Z :=
X − µ
σ

∼ N (0, 1).

N (0, 1) is called the standard normal (or Gaussian).

32. Gamma distribution with parameters α, β. X ∈ R+ := [0,∞),

fX(x) =
βα

Γ(α)
xα−1 e−βx, x ≥ 0,

and fX(x) = 0 for all x ≤ 0. Here Γ(α) is the Gamma function and for integer values
Γ(m) = (m− 1)!.

E(X) =
α

β
, V ar(X) =

α

β2
.

33. Beta distribution with parameters α, β. Θ ∈ [0, 1],

fΘ(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1 (1− θ)β−1, θ ∈ [0, 1],

and fΘ(θ) = 0 for all θ 6∈ [0, 1].

E(Θ) =
α

α + β
, V ar(Θ) =

αβ

(α + β)2 (1 + α + β)
.

34. Chebyshev’s Inequality. For a r.v., X and a increasing function G, a real number a
with G(a) > 0,

P(X ≥ a) ≤ E [G(X)]

G(a)
.
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35. Law of Large Numbers. Let {Xi}i be an i.i.d. sequence. Set µ := E[Xi], σ
2 := V ar(Xi)

for any i,

Xn :=
1

n

n∑
i=1

Xi, Zn :=

√
n

σ
[Xn − µ].

Then, weak law of large numbers state that Xn converges to µ in probability and strong
law states that the convergence is almost surely.

36. Central Limit Theorem

The distribution of Zn converges to the standard Gaussian, i.e., for every continuous
and bounded function ϕ,

lim
n→∞

E [ϕ(Zn)] =
1√
2π

∫
ϕ(x) exp (−x

2

2
) dx.

37. χ-Square (χ2) Distribution.

χ2 distribution with m degrees of freedom is the Gamma distribution with parameters
(m/2, 1/2). Denoted by χ2(m). In particular,

X ∼ N (0, 1) ⇒ X2 ∼ χ2(1),

Xi ∼ N (0, 1) i.i.d ⇒
m∑
i=1

X2
i ∼ χ2(m),

38. Student t distribution.

If Z ∼ N (0, 1), Y ∼ χ2(m), Z ⊥ Y , then,

T :=
Z√
Y/m

,

has t distribution with m degrees of freedom. Denoted by t(m).

Its density is given by

fT (t) =
Γ((m+ 1)/2)√
mπ Γ(m/2)

(
1 +

t2

m

)−(m+1)/2

, t ∈∈ R.

39. If {Xi}ni=1 are i.i.d. with N (µ, σ2) distribution. Let Xn as in item 35. Set

S2
n :=

n∑
i=1

(Xi −Xn)2, σ′ :=

[
1

n− 1
S2
n

]1/2

.

Then, Xn ⊥ S2
n and

U :=

√
n

σ′
[
Xn − µ

]
has t(n− 1) distribution.
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40. Two sided Confidence Interval. With the notation of item 39,

A := Xn − T−1
n−1

(
1 + γ

2

)
σ′√
n
,

B := Xn + T−1
n−1

(
1 + γ

2

)
σ′√
n
,

where Tm is the c.d.f. of the t distribution with m degrees of freedom, T−1
m is its inverse

function, parameter γ ∈ (0, 1) is the confidence level.

The interval (A,B) is γ-level two sided confidence interval.

41. One sided Confidence Interval With the notation of item 39,

Â := Xn − T−1
n−1(γ)

σ′√
n
,

B̂ := Xn + T−1
n−1(γ)

σ′√
n
.

The interval (Â,∞) is a γ-level upper confidence interval.

The interval (−∞, B̂) is a γ-level lower confidence interval.

42. Change of Variables Formula LetX = (X1, . . . , Xn) have a continuous joint distribution
fX(x) for x ∈ Rn. Let Y = AX for some non-singular square matrix A. Then, the
probability distribution function of Y is given by,

fY (y) =
1

|det(A)|
fX(A−1y), y ∈ Rn.


