Probability and Statistics		
FS 2017	Name:	
Session Exam		
22.08.2017		
Time Limit: 180 Minutes	Student ID:	

This exam contains 13 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam.

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
Total:	100	

Grade Table (for grading use only, please leave empty)

Informations. Read this carefully.

- Please justify all your statements carefully. Explain the steps of your reasoning. Otherwise no points will be given.
- You are expected to write full sentences when giving your answer.
- DO NOT WRITE with red or green pens. DO NOT WRITE with a pencil.
- Your answers should be *readable*.
- Write your name on all the sheets you intend to hand in before the end of the exam.

GOOD LUCK

1. (10 points) Counting Problems

- (a) (3 points) A small voting district has K female voters and L male voters. A random sample of N voters, where $N \leq K + L$, is drawn uniformly at random from the population. Let $n \leq \min\{K, N\}$. What is the probability that exactly n of the N voters will be female? Do you recognize a known distribution? Write down its name.
- (b) (7 points) At a wedding, a group of $n \ge 3$ people (including the married couple, Alice and Bob) wants to take a picture. They all stand in a line, the order of the people in the line taken uniformly at random among the permutations of n elements. What is the probability that exactly k guests stand between Alice and Bob, for $k \in \{0, 1, ..., n-2\}$?

2. (10 points) Conditional Probabilities

A group of people is considered in order to assess the reliability of a disease test procedure. In this group of people we know that the probability that an individual taken at random has the disease is $\frac{1}{3}$. The presence of the disease is then tested by the detection of some markers in the blood. After examination of the results, it is found that the probability of a true positive (markers are detected by the procedure in a sick patient) is $\frac{4}{5}$. The probability of a false positive (markers are found in the blood sample of a healthy patient) is $\frac{1}{5}$.

- (a) (5 points) Compute the probability of the patient being sick given that the markers were found in the blood sample, i.e. the test result is positive.
- (b) (5 points) Compute the probability of the patient being sick given that no markers were found in the blood sample, i.e. the test result is negative.

3. (10 points) **Doubling Strategy**

A fair coin is used in a simple game, i.e. the probability that it falls on head when tossed is $\frac{1}{2}$. The mechanism of the game is the following: the player bets k dollars and the coin is tossed. If head shows, he gets his k dollars back and wins k additional dollars. If tail shows, he loses his k dollars.

The player now follows the following strategy: he first bets 1 dollar. Then, he applies the following algorithm:

- if he wins, he stops playing,
- if he loses, he plays again and doubles his bet (2 dollars for the second game, 4 dollars for the third, etc...).

As long as he loses, he keeps on playing, betting 2^k dollars in the (k + 1)-th game. We assume that the throws of the coin are independent. Let X be the amount of dollars the player bets in the last game.

- (a) (3 points) Write down the probability distribution of X, i.e. give $\mathbb{P}(X = 2^k)$ for $k \in \{0, 1, 2, ...\}$.
- (b) (3 points) Show that the expectation of X does not exist.
- (c) (3 points) Compute the overall amount of money earned at the end of the game.
- (d) (1 point) Is the strategy applied in this exercise a good strategy? Why / Why not?

4. (10 points) Pareto and the 80-20-"Rule"

Let $\gamma > 1$ and m > 0. Let X be a random variable with density function f given by

$$f(x) = \begin{cases} \frac{\gamma m^{\gamma}}{x^{\gamma+1}}, & \text{if } x \ge m, \\ 0 & \text{else.} \end{cases}$$

The random variable X is said to have a Pareto distribution with parameters γ and m.

(a) (4 points) Let x ≥ a ≥ m. Compute P(X > a), P(X > x | X > a) and the density function of X given {X > a}.
Hint: Recall that the density function of X given {X > a} is obtained by differentiating the distribution function of X given {X > a}, i.e.

$$f_{X|\{X>a\}}(x) = \frac{d\mathbb{P}\left(X \le x|X>a\right)}{dx}.$$

(b) (1 point) Let $a \ge m$. Compute $\mathbb{E}[X|X > a]$.

Assume now and for the rest of the exercise, that $\gamma = \frac{\ln(5)}{\ln(4)}$ and m = 1.

- (c) (2 points) Compute the 0.8-quantile $q_{0.8}$ of this Pareto distribution. Hint: Recall that in general the α -quantile q_{α} is defined as a real number that satisifies $P(X \leq q_{\alpha}) \geq \alpha$ and $P(X \geq q_{\alpha}) \geq 1 - \alpha$.
- (d) (3 points) Compute $\mathbb{E}[X]$ and $\mathbb{E}[X\mathbb{1}_{\{X>q_{0.8}\}}]$. Compare the two values by computing the ratio $\frac{\mathbb{E}[X\mathbb{1}_{\{X>q_{0.8}\}}]}{\mathbb{E}[X]}$ and give an interpretation.

5. (10 points) Continuous Joint Distribution

Let (X, Y) be a random vector with joint probability density function

$$f(x,y) = \begin{cases} cx e^{-xy} & \text{if } 0 \le x \le 1 \text{ and } 0 \le y \le 2, \\ 0 & \text{else,} \end{cases}$$

for some constant c > 0.

(a) (3 points) Compute the value of c.

(b) (3 points) Compute the marginal density of X.

(c) (4 points) Compute the expectation of the product XY.

6. (10 points) Markov, Chebyshev and Chernoff Inequalities

(a) (3 points) Let X be a random variable such that for $t < t_0$ the following holds:

$$\psi(t) := \mathbb{E}\left[\mathrm{e}^{tX}\right] < \infty.$$

This function is called the moment generating function of X. Let $x \in \mathbb{R}$. Then we define

$$\kappa(t) := \ln[\psi(t)]$$

and

$$S(x) := \sup_{0 < t < t_0} \{ tx - \kappa(t) \}.$$

Prove the Chernoff inequality

$$\mathbb{P}\left(X \ge x\right) \le \mathrm{e}^{-S(x)}.$$

Hint: Apply the generalized Chebyshev inequality with the function $g(y) := e^{ty}$.

Assume now and for the rest of the exercise, that X is distributed as a standard normal random variable $\mathcal{N}(0, 1)$.

- (b) (2 points) Compute the moment generating function of X. Give the details of your computations.
- (c) (2 points) Let x > 0. Apply the Chernoff inequality from (a) to $X \sim \mathcal{N}(0, 1)$.
- (d) (2 points) Let x > 0. Apply the Markov inequality to $|X \mathbb{E}[X]|^2$ to get another upper bound for $\mathbb{P}(X \ge x)$.
- (e) (1 point) What can you say about the efficiency of the two inequalities you got in
 (c) and in (d)?

- 7. (10 points) Limit Theorem
 - (a) (3 points) Let X be a random variable with mean μ and finite variance σ^2 . Show that for any distribution of X, the probability that X differs from its mean by more than 3 standard deviations is at most $\frac{1}{9}$.
 - (b) (7 points) Let $(X_i)_{i \in \mathbb{N}}$ be independent, identically distributed random variables with the same distribution as X. For all $n \in \mathbb{N}$, define $\bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$ to be the sample mean of the first n elements of the sequence $(X_i)_{i \in \mathbb{N}}$. Compute with a limit theorem the approximate minimum value of n such that

$$P\left(\left|\bar{X}_n - \mu\right| \le \frac{\sigma}{3}\right) \ge 0.9.$$

8. (10 points) Maximum Likelihood Estimation

The Pareto distribution introduced in Exercise 4 is used a lot in insurance claim modelling. But to use it for simulation, the parameters need to be estimated. Recall that the density function of a Pareto distribution with parameters γ and m is given by

$$f(x) = \begin{cases} \frac{\gamma m^{\gamma}}{x^{\gamma+1}} & \text{if } x \ge m, \\ 0 & \text{else.} \end{cases}$$

We observe the reporting of n claims with values x_1, x_2, \ldots, x_n .

- (a) (4 points) Define and compute the likelihood function and the log-likelihood function.
- (b) (4 points) For a fixed m, give the maximum likelihood estimate for the parameter γ .
- (c) (2 points) For a fixed γ , give the maximum likelihood estimate for the parameter m.

9. (10 points) **Posterior Distribution**

Let X_1, \ldots, X_n be independent, identically distributed random variables sampled from the Geometric distribution with parameter $0 < \theta < 1$, which is unknown. Assume that we have a prior distribution for θ , which is the Beta distribution with parameters $\alpha > 0$ and $\beta > 0$. Recall that the geometric distribution is such that

$$P(X = x | \theta = \vartheta) = \begin{cases} \vartheta (1 - \vartheta)^{x - 1} & \text{if } x \in \mathbb{N} \setminus \{0\}, \\ 0 & \text{else,} \end{cases}$$

and that the Beta distribution with parameters α and β has the density function

$$w(\vartheta|\alpha,\beta) = \begin{cases} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \vartheta^{\alpha-1} (1-\vartheta)^{\beta-1} & \text{if } 0 \le \vartheta \le 1, \\ 0 & \text{else.} \end{cases}$$

In an experiment we observe $X_1 = x_1, \ldots, X_n = x_n$ for some $x_1, \ldots, x_n \in \mathbb{N} \setminus \{0\}$. Show that the posterior distribution of θ given that $(X_1, \ldots, X_n) = (x_1, \ldots, x_n)$ is the Beta distribution with parameters $n + \alpha$ and $\beta + \sum_{i=1}^n x_i - n$.

10. (10 points) Hypothesis Test

The printers of the student computer room are submitted to a heavy workload. Let X_1, \ldots, X_9 model the lifetime (in months) for 9 of the printers. We assume that X_1, \ldots, X_9 are independent and normally distributed with unknown mean μ and variance equal to 4 months. Moreover, assume that we observe the following number of months of service for the 9 printers:

25, 26, 22, 29, 23, 20, 30, 28, 31.

We want to test the hypothesis

 $H_0: \mu = 25$ against $H_1: \mu \neq 25.$

Build a statistical test to test the above hypothesis at the level $\alpha = 0.05$. In particular, give the test statistic you use, its distribution under H_0 , the rejection region and decide whether we can reject the null hypothesis in this particular situation.

$P(X \le x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{y^2}{2}\right) \mathrm{d}y, \text{ for } x \ge 0$										
	0	1	2	3	4	5	6	7	8	9
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6408	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.97725	.97778	.97831	.97882	.97932	.97982	.98030	.98077	.98124	.98169
2.1	.98214	.98257	.98300	.98341	.98382	.98422	.98461	.98500	.98537	.98574
2.2	.98610	.98645	.98679	.98713	.98745	.98778	.98809	.98840	.98870	.98899
2.3	.98928	.98956	.98983	.99010	.99036	.99061	.99086	.99111	.99134	.99158
2.4	.99180	.99202	.99224	.99245	.99266	.99286	.99305	.99324	.99343	.99361
2.5	.99379	.99396	.99413	.99430	.99446	.99461	.99477	.99492	.99506	.99520
2.6	.99534	.99547	.99560	.99573	.99585	.99598	.99609	.99621	.99632	.99643
2.7	.99653	.99664	.99674	.99683	.99693	.99702	.99711	.99720	.99728	.99736
2.8	.99744	.99752	.99760	.99767	.99774	.99781	.99788	.99795	.99801	.99807
2.9	.99813	.99819	.99825	.99831	.99836	.99841	.99846	.99851	.99856	.99861
3.0	.998650	.998694	.998736	.998777	.998817	.998856	.998893	.998930	.998965	.998999
3.1	.999032	.999065	.999096	.999126	.999155	.999184	.999211	.999238	.999264	.999289
3.2	.999313	.999336	.999359	.999381	.999402	.999423	.999443	.999462	.999481	.999499
3.3	.999517	.999534	.999550	.999566	.999581	.999596	.999610	.999624	.999638	.999651
3.4	.999663	.999675	.999687	.999698	.999709	.999720	.999730	.999740	.999749	.999758
3.5	.999767	.999776	.999784	.999792	.999800	.999807	.999815	.999822	.999828	.999835
3.6	.999841	.999847	.999853	.999858	.999864	.999869	.999874	.999879	.999883	.999888
3.7	.999892	.999896	.999900	.999904	.999908	.999912	.999915	.999918	.999922	.999925
3.8	.999928	.999931	.999933	.999936	.999938	.999941	.999943	.999946	.999948	.999950
3.9	.999952	.999954	.999956	.999958	.999959	.999961	.999963	.999964	.999966	.999967

Standard normal (cumulative) distribution function.