Probability and Statistics

FS 2017 Name:
Second Session Exam

09.02.2018

Time Limit: 180 Minutes Student ID:

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet
is provided with the exam.

Please justify all your steps carefully. Otherwise no points will be given.

Grade Table (for grading use only, please leave empty)

Question | Points | Score

1 10
10
10
10
10
10
10
10
10
10
Total: 100

O [0 [ | O | O | = | W | N

—_
e




Probability and Statistics Second Session Exam - Page 2 of 19 09.02.2018

Informations. Read this carefully.

Please justify all your statements carefully. Explain the steps of your reasoning. Oth-
erwise no points will be given.

You are expected to write full sentences when giving your answer.

DO NOT WRITE with red or green pens. DO NOT WRITE with a pencil.

e Your answers should be readable.

Write your name on all the sheets you intend to hand in before the end of the exam.

GOOD LUCK



Probability and Statistics Second Session Exam - Page 3 of 19 09.02.2018

1. (10 points) Conditional Probabilities
(a) (4 points) Let (€2, 4,P) be a probability space and A, B € A with P(A) = 0.6 and

P(B) =0.7. Show that P(B|A) > 0.5.

(b) (6 points) Suppose we are given three different dice. The first die is fair, i.e. the

probability to obtain a six is %. The second and the third die are biased. The

probability to obtain a six with the second die is % and the probability to obtain a
six with the third die is 1. Suppose that one of the three dice is chosen at random
and tossed. Moreover, suppose that we get a six. Cualculate the probability that the
fair die was chosen.

Solution

(a)

We calculate
P(A°U B¢) <P(A°) +P(B°) =04+ 0.3 =0.7,

which leads to
P(ANB)=1-P(A°UB°)>1-0.7=0.3.

Therefore we get

PANB) 03 _ 5

P(B4) = P(A) 0.

D

We define the following four events:

A := first die was chosen,

B := second die was chosen,

C := third die was chosen,

76" := we obtained a six,

i.e. we have to calculate P(A|”6”). We know from the problem formulation that

and that . 1
P("6”|A) = 6’ P("6”|B) = 3 and P("6”|C) = 1.
We apply Bayes Theorem to get

P("6”[A) - P(A)
("6"A) - P(A) + P("6"|B) - P(B) + P("6"|C)) - P(C)

]P)(A|7’677) — IP

= |
Wl |l

D=
Wl
+

1
+1-4

D=

T, 1
stz t1
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2. (10 points) Density, Expectation, Variance and Covariance
Let X be a real-valued random variable with density
c(4—2%) fo<x<2,
f(z) :{ O( ) else,_ -
for some constant ¢ > 0.
(a) (2 points) Calculate c.
(b) (2 points) Calculate E[X].
(c) (2 points) Calculate Var(X).

Let Y be another real-valued random variable with E[Y] = %, Var(Y) = % and
Cov(X,Y) = 1.

(d) (2 points) Calculate E[XY].
(e) (2 points) Calculate Var(X +Y).

Solution

(a) We calculate

CcC = 1_6
(b) To get E[X], we compute
00 2 2
B = [ of@do= [Capa- o= g [ar-stdo— fs-a =]

> ’ 2 2 32
E[X?] —/ 22 f(x) d —/ 225 (4 g?) dy = 13 gt dy = (3_ B 3_) _
0

—00

Hence, we get
Var(X) = E[X?] - E[X]* = - — (_
(d) We calculate
E[XY] = Cov(X,Y) + E[X]E[Y] =
(e) We calculate
19 101 1

Var(X 4+ Y) = Var(X) + Var(Y) + 2Cov(X,Y) = P + 0 +2- 1 2.
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3. (10 points) Chebyshev Inequality

(a) (4 points) Let g : R — [0,00) be an increasing function. Let ¢ € R such that
g(c) > 0. Let X be a real-valued random variable. Show that

o < Elg(X)]
PX 20 < gle)

Note that you can NOT use that X has a probability mass function or a density.
Hint: Use that the probability of an event can be written as the expectation of the
indicator function of this event.

(b) (2 points) Let X be a real-valued random variable and ¢ > 0 a constant. Use the
result in (a) to show that

Var(X
P(X — E[X]| > o) < ~X)
c
Now let Xi,..., X509 be independent, identically Poisson distributed random variables

with parameter A = 2 and define S = % 2?21 X;.
(c) (4 points) Using the result in (b), give the smallest possible value of ¢ > 0 such that

P(|S — E[S]| > ¢) < 0.01.

Solution

(a) Since g is positive, increasing and g(c) > 0, we get

lix>q < almost surely.

Hence we can conclude

P(X > ¢) = E[1{xsq] <E [g(X)] Elg(X)]

g(c)

(b) We define Y := |X — E[X]| and g(x) := 2? as a function from [0, 00) to [0, 00).
Then ¢ is an increasing function with g(z) > 0 for all z > 0 and

E[g(Y)] = E[(X — E[X])*)] = Var(X).

Hence we get

B(IX — E[X]| > ¢) = B(Y > o) <

where for the inequality we used the result in (a).
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(c) Let i € {1,...,50}. Since X; ~ Poi(2), we have Var(X;) = 2. Moreover, since
Xi,...,X50 are independent, we have

1 50 1 2 50 9 1
Var(§) = Var [ = S, | = (=) -3 Var(X) = = = —.
ax(5) ar<5o; ) (50) 2 Var(Xi) = 55 = 55

Using the result in (b), we get

P(lS - E[S]] > ¢) <

Now .
— <001 <— 2> 9
25¢2 — €=

from which we can conclude that ¢ = 2.
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4. (10 points) Convergence in Probability and Almost Sure Convergence
(a) (3 points) Let (X,),>1 be independent, Bernoulli distributed random variables with
1 1
P(X,=1)=— and P(X,=0)=1-——, for all n > 1.
n n
Show that X,, converges to 0 in probability, as n — oo.

(b) (7 points) Let (Y,),>1 be independent, identically uniformly distributed random
variables on [0, 1]. Define M, := min{Y;,...,Y,} for all n > 1.  Show that M,
converges to 0 almost surely, as n — oo.

Hint: Use the first Borel-Cantelli Lemma to show that for an arbitrary y € (0,1)

we have lim M, <y almost surely.
n—oo

Solution

(a) For e > 1, we get
P(|X,, — 0] >¢€) =P(X,, > €) =0, for all n > 1.

For 0 < e <1, we get
1n o
P(|X, —0] >€) =P(X, >¢) =P(X, =1) = — =3 0.

(b) Let y € (0,1) and n > 1. Then, using the i.i.d.-property of Y;i,...,Y, and the
definition of the distribution function of a uniform distribution on [0, 1], we calculate

P(M, > y) =P(min{Y;,....Y,} > ) =P(Y1 > y,.... Y, >y) = [[P(Y; > v)
=1

=PMi>y)"=(1-y)".

Using this result, we get

= = " 1—vy 1
;P(Mn>y)22(1—y) :m:§—1<oo.

n=1
Due to the first Borel-Cantelli Lemma, we get P(M,, > y for infinitely many n) = 0.
This implies that lim,,_,,, M, < y almost surely. Since y was chosen arbitrarily in
(0,1), we can conclude that M, converges to 0 almost surely, as n — oc.
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5. (10 points) Random Vector and Conditional Distribution

Let X and Y be two independent, exponentially distributed random variables with
parameter A = 1. Let us define T'= X + Y.

(a) (1 point) What is the joint density of the random vector (X,Y)?
(b) (
(c) (2 points) Use the result obtained in (b) to calculate the marginal density of T
(d) (

5 points) Calculate the joint density of the random vector (X, T).

2 points) Calculate the conditional density of X given T = 1.
Solution

(a) Since X and Y both have an Exponential(1)-distribution, their corresponding den-
sities fx and fy are
fx(@) = fy(xz) =e " 1o
Moreover, since X and Y are independent, the joint density fxy of the random
vector (X,Y') is given by

Fxy(@y) = fx(@) fr(y) = e 150

s (0).

(X)iy) =B ()é) . B = (_11 (1)) and  det(B) = 1.

By the Transformation Theorem, we get for the joint density fxr of the random
vector (X, T)

(b) We define

Then

[xr(z,t) = ]det—l(B)] fxy (B_l ’ (f))

= fxy(xz,t —x)

_ o (wtt=a) Lizt a0}

=e " Liseso)-
(c) We calculate the marginal density fr of 1" using the joint density fy r found in (b):
00 00 t
fT<t> = / fX7T<£IZ', t) dr = / e*t : 1{t2m20} dr = / e*t . 1{7520} dr = te*t . 1{1520}.
—o0 —o0 0
(d) We calculate the conditional density fx|r—1 of X |T = 1 using the joint density
fxr found in (b) and the marginal density fr found in (c):

fxr(z,1) et 1isas0
Peralw ) ="y = o = Lz,
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6. (10 points) Joint Distribution and Jensen’s Inequality

Peter has two possibilities to go to work: Either he can walk the short distance or he can
take the bus. The bus stop is on his way to the office. Every morning Peter arrives at a
random time between 7:10 and 7:20 at the bus stop. Likewise, also the bus arrives at the
stop at a random time between 7:10 and 7:20. Let X ~ Uni([10,20]) model the arrival
time of Peter at the bus stop in minutes after 7:00 and Y ~ Uni([10,20]) model the
arrival time of the bus at the bus stop in minutes after 7:00. Moreover, we assume that
the arrival time of Peter and the arrival time of the bus at the bus stop are independent,
i.e. that X and Y are independent.

(a) (5 points) Suppose that when Peter arrives at the bus stop, he waits for at most
five minutes: If the bus arrives within these five minutes, he takes the bus, otherwise
he walks to the office. Calculate the probability that Peter takes the bus.

(b) (5 points) Show that E [£] > 1 without calculating it. Can we conclude that, on
average, Peter arrives at the bus stop later than the bus?

Solution

(a) Since X and Y are independent, uniformly on [10, 20] distributed random variables,
the joint density fxy of (X,Y) is given by

1 1 1
fxy(z,y) = 0 1izep10,20)) - 0 1iyeqooy = 100 12 yef10,20))-

Peter takes the bus if and only if X <Y < X + 5. Thus, we calculate

P(”Peter takes the bus”) =P(X <Y < X +5)

/ / fxy(z,y)dydx
115 20 20
= / / m dydx + / / m dydx

:100 . (x+5—3:)dx+1—00 (20—:17)0[96
25 1 1

=m+m{100—5(400—225)}

50 25

<200 " 200

3

"8

(b) Note that Y is non-deterministic, takes values in [10,20] and that the function
x +— 1/x is strictly convex on [10,20]. Hence we can apply Jensen’s inequality to
get
X 1 1

E|l=|=EX|E || >EX]| %=1

v] e[y ] - sy
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where we used in the first equality that X and Y are independent and in the second
equality that X and Y have the same distribution. We can not conclude from this
inequality that, on average, Peter arrives at the bus stop later than the bus. Since
X and Y have the same distribution, we also have E[X| = E[Y].
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7. (10 points) Posterior Distribution

Let X be a normally distributed random variable with mean #, which is unknown, and
variance equal to 1. Assume that we have a prior distribution for §, which is the standard
normal distribution. Moreover, suppose that in an experiment we observe that X = x.

(a) (7 points) Show that the posterior distribution of 6 given X = z is the normal

distribution with mean % and variance %

(b) (3 points) Determine the Mazimum a Posteriori estimate of 0 given X = x.

Solution
(a) The density fx|g—g of X |0 =¥ is given by

1
fxjo=o(z|0) = e~ 2(@=9)?

The density fy of 6 is given by

= e
V2w
Hence for the joint density fyx o of X and 0 we get

fxo(@,0) = fx|o=o(x[9)fo(V)

1 1 1
e_E(I_ﬂ)2_§ﬁ2

The marginal density fy of X is obtained by integrating the joint density fx g(x,?)

with respect to ¢:
1 1
” 20-30 gy — 47" \ﬁ
f/ /97 Vo 2

Conditioned on X = x, 6 has the density

fop el 2) = TX0E ’9)— L0402,

)&H
N

/fxgazl?dﬁ— —e

We conclude that

x 1
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(b) The Maximum a Posteriori estimate éM ap of 0 given X = x is defined as

. 1 1 142
0 = arg ma (V| x) = argma e 22(0—32)"
MAP gImax fo x=.(9| ) grax ——

Since —32 (9 —32)> <0 forall ¥ e R\ {32} and =32 (3 z — 5 2)*> = 0, we get

T

Oriap = 5
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8. (10 points) Maximum Likelihood Estimation
Let # > —2 be unknown. Suppose X is a random variable with density fy given by

[ (@+2)2 ifo<ax <],
Jolz) = { 0 else.

Let (X;);>1 be independent, identically distributed random variables with the same dis-
tribution as X.

(a) (7 points) Let us consider Xi,...,X,. Show that the Mazimum Likelihood Esti-
mator (MLE) Oppe(Xy, ..., X,) of 0 is
1
% Z?:l IOg(Xi> .
(b) (3 points) For the random variable X one can show that

E[log(X)] = —94_#2 and  Var[log(X)] < oo.

Ovire(X1, ..., X,) =—2—

Use these two results to show that éMLE(Xl, ..., X,) given in (a) converges almost
surely to 6, as n — oo.

Solution

(a) The likelihood function L(#) is given by

n n n

L) =[] fo(Xi) = [ JO+ X" Loexi<ny = [ [0+ 2) X7,

=1 =1 =1

since X7i,..., X, only take values in [0,1]. By taking the logarithm, we get the
log-likelihood function

M@zkgwwﬂzbghlw+zij]:}jmgw+m+we+mmgxm.

i=1 i=1
We then have
éMLE(Xl, ..., X,) =argmax L(0) = argmax ((0).

>—2 6>—2
We find the maximum of [(§) on (—2,00) by differentiating {(f) and setting the
derivative equal to zero. We have
21(0) = Qi [log(# +2) + (0 + 1)log(X;)] = i 1 + log(X;)
o6~ 9 =" R I R

=1
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and
+ Z og(X = ! ilog(Xi)
0 + 2 + 2 n ‘=
1
= 0 =-2 m
% szl log<XZ)

Since

0? n

= - X)) =— for all -2

802l(9) 50 Z)] (9+2)2<0 orall > =2

[(0) is strictly concave on (—2,00). Therefore the unique root of the log-likelihood
function found above is indeed the location of the maximum of the log-likelihood
function. Hence we have found

1
% Z?:1 log(Xi) .

(b) Since [log(X;)]i>1 are i.i.d. random variables and Var[log(X)] < oo according to the
hint, we can apply the Strong Law of Large Numbers to get

Ovire(X1, ..., X,) =—2—

1

— Zlog ) — Ellog(X)] = 5
almost surely, as n — oo, and thus

. 1
QMLE(X17"'7X’VL)—>_2_ 1 =0
T 0+2

almost surely, as n — oo.
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9. (10 points) Hypothesis Test

Let Xi,...,Xs be the annual average temperature of the last six years. Suppose that
Xq,...,Xg are independent, normally distributed random variables with unknown mean
p and variance 02 = % and that we made the following observations:

Xl == 10, X2 - 12, X3 = 11, X4 - 9, X5 = 13, Xﬁ - 11

A meteorologist claims that the expected annual average temperature is 10. We will
investigate this statement using a z-test with significance level o = 0.05. To begin with,
we define the null hypothesis and the alternative hypothesis as

Hy: p=10, Hy: p#10.
(a) (4 points) Write down a test statistic T' that depends on X1, ..., X¢ and such that
T ~ N(0,1) under H,.

(b) (4 points) Let Py denote the probability measure under Hy. Find ¢* > 0 such that
Po(T € [—¢*,¢"]) =1 —a.
Hint: You may use the table for the standard normal distribution to read off q* in
the end.

(c) (2 points) Can we reject Hy on the basis of the siz observations 10,12,11,9,13, 11
using a significance level of o = 0.057

Solution

(a) We define X = %Z?Zl X;. Since Xq,...,Xg CN (10, %) under Hy, we have that
X is again normally distributed with

E [X] ZEZE[Xi]le and Var (X) :%ZVar(Xi):i

i=1
under Hy. If we then define

T :=T(Xi,...,Xe) ::X_E[{(] :X_losz—Qo,
Var(X)

D=

we have that 7'~ N(0, 1) under Hy.

(b) Let ¢ > 0. Since the normal distribution is symmetric, we can calculate

Po(T € [=q,q]) =Po(T < q) = Po(T < —q) =Po(T' < q) = Po(T > q)
=P(T <q) — (1 =Po(T < q)) =2Py(T' < q) — 1.

Therefore we can deduce that

IPO(TG[—q,q]):1—a<:>2IP>O(T§q)—1:1—a<:>IP’0(T§q)=1—%.
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If we write @ for the distribution function of the standard normal distribution and
using that a = 0.05, we get

¢ =07 (1-5) = 27(0.975).

Checking the table for the standard normal distribution, we find ¢* = 1.96.

(c) We use the observations given in the exercise to calculate
1
T(10,12,11,9,13,11) = 2- = - 66 — 20 = 2.

Since 2 > ¢* = 1.96, we reject Hy on the basis of the six observations 10,12,11,9,13, 11
using a significance level of a = 0.05.
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10. (10 points) Confidence Interval
Suppose we have a coin with P("head”) = p, where p € (0,1) is unknown and we toss

this coin independently n times. For all 1 < i < n, we define

Y. 1 if we get head in the i-th throw,
71 0 if we get tail in the i-th throw.

Moreover, we define X := %Z?:l X;. Finally, let a € (0,1) and ® be the standard
normal distribution function. Use the Central Limit Theorem to show that

¢ 20-g) o o3
[X—T“*T

is an approximate (1 — «)-confidence interval for p.

Hint: The confidence interval resulting from the Central Limit Theorem approrimation
will depend on p. Since a confidence interval for p is not allowed to depend on p, you
will have to mazximize the interval with respect to p to get boundaries that do not depend
on p anymore.

Solution

We have that Xi,..., X, w Ber(p), hence

E [X] :%ZE[Xi]:p and Var (X) :%iVar(Xi):M.

n

According to the Central Limit Theorem, we have

X—]E[X'] _ X—p e N(O, 1).

VVar (X) /o)

Let Z ~ N(0,1) and ¢ > 0. Since the normal distribution is symmetric, we can calculate

P(Z €[=q.q) =P(Z < q) —P(Z < —q) =P(Z < q) = P(Z > q)
=P(Z<q-(1-P(Z<q)=2PZ<q) -1
=20(q) — 1.

Thus, we have

rlze [t (1-5) o (- §) )} ~sofo (- 5)] 110

Therefore,
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which leads to

IP’[)_(—@_1<1—%> p—(ln_p)gpg)_(—l—fb_l@—%) p—(ln_p)lzl—a.

Since a confidence interval of p is not allowed to depend on p, we have to maximize
p(1 — p) = p — p* with respect to p. We have

0 9 1 0? 9
Hence, p(1 — p) is a strictly concave function on [0,1] with a unique maximum of
% (1 — %) = i at p = % We conclude that
o et (1-9) o (14
X — ( 2) ,X + ( 2)

2v/n

is an approximate (1 — a)-confidence interval for p.
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Standard normal (cumulative) distribution function.

T 1 y2
P(XS:I;):/ exp | —% |dy, forz >0

—oo V2T 2
T 0 ] 2 3 i 5 6 7 8 9
0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 5279 .5319 .5359

0.1 .5398 .5438 .5478 5517 5557 .5596 .5636 5675 5714 5753
0.2 5793 5832 5871 5910 .5948 5987 .6026 .6064 .6103 .6141
0.3 .6179 .6217 .6255 .6293 6331 .6368 .6406 .6443 .6408 .6517
0.4 .6554 .6591 .6628 .6664 .6700 .6736 6772 .6808 .6844 .6879
0.5 .6915 .6950 .6985 .7019 7054 .7088 7123 7157 .7190 7224
0.6 1257 7291 7324 1357 7389 7422 7454 .7486 L7517 .7549
0.7 .7580 7611 7642 7673 7704 1734 7764 7794 7823 7852
0.8 .7881 7910 7939 7967 7995 .8023 .8051 .8078 .8106 8133
0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 9015
1.3 9032 .9049 .9066 .9082 9099 9115 9131 9147 9162 9177
1.4 9192 .9207 .9222 .9236 9251 .9265 9279 .9292 .9306 9319
1.5 9332 .9345 9357 9370 9382 9394 .9406 9418 .9429 9441
1.6 .9452 9463 9474 9484 .9495 .9505 9515 9525 9535 .9545
1.7 9554 9564 9573 .9582 9591 .9599 .9608 .9616 9625 9633
1.8 9641 .9649 9656 9664 9671 9678 .9686 9693 9699 9706
1.9 9713 9719 9726 9732 9738 9744 9750 9756 9761 9767

2.0 97725 97Tr8 97831 97882 97932 97982 98030  .98077  .98124 = .98169
2.1 98214 98257 98300 98341 = .98382  .98422  .98461  .98500  .98537  .98574
2.2 98610 98645  .98679 98713  .98745 98778 98809  .98840  .98870  .98899
2.3 98928 98956 98983  .99010  .99036  .99061  .99086  .99111  .99134  .99158
24 99180  .99202 99224 99245 99266  .99286  .99305  .99324  .99343  .99361
2.5 99379 99396 99413 99430 99446  .99461  .99477  .99492  .99506  .99520
2.6 99534 99547 99560 99573 99585  .99598  .99609  .99621 = .99632  .99643
2.7 99653 99664 99674 99683 99693  .99702 99711  .99720  .99728  .99736
2.8 99744 99752 99760 99767 99774 99781 99788  .99795  .99801 = .99807
2.9 99813 99819 99825 99831 99836  .99841 = .99846  .99851  .99856  .99861

3.0 || .998650 .998694 .998736 .998777 998817 .998856 998893 .998930 .998965 .998999
3.1 (] 1999032  .999065 .999096 .999126 .999155 .999184 999211 .999238 .999264 .999289
3.2 || 1999313 .999336 .999359 .999381 .999402 .999423 .999443 .999462 .999481 .999499
3.3 || .999517 .999534 .999550 .999566 .999581 .999596 .999610 .999624 .999638 .999651
3.4 || 1999663 .999675 .999687 .999698 .999709 .999720 .999730 .999740 .999749 .999758
3.5 || 999767 .999776 .999784 .999792 999800 .999807 .999815 .999822 .999828  .999835
3.6 || .999841 .999847 .999853 .999858 .999864 .999869 .999874 .999879 999883 .999888
3.7 1] 1999892  .999896 .999900 .999904 .999908 .999912 .999915 .999918 .999922  .999925
3.8 || .999928 .999931 .999933 .999936 .999938 .999941 .999943 .999946 .999948 .999950
3.9 || 1999952  .999954 .999956 .999958 .999959 .999961 .999963 .999964 .999966 .999967




