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1 Recall

Last week’s presentation showed the equivalence of the Prime Ideal Theorem to
several other theorems and principles, in particular the Ultrafilter theorem. We
recall the Prime Ideal Theorem (PIT ) and the Ultrafilter Theorem (UT ).

Theorem 1 (Prime Ideal Theorem). If I is an ideal in a Boolean algebra, then I
can be extended to a prime ideal.

Theorem 2 (Ultrafilter Theorem). If F is a filter over a set S, then F can be
extended to an ultrafilter.

This week, we want to give a graph-theoretical statement which we will show is
equivalent to the PIT .

2 Introduction

We introduce the graph-theoretical notion of Pn. For this we define what a sub-
graph is, and what n-colourable means.

Definition 3 (Subgraph). G′ = (V ′, E ′) is a subgraph of G = (V,E) if V ′ ⊆ V ,
E ′ ⊆ E, and for all x, y ∈ V ′,

{x, y} ∈ E ′ ⇐⇒ {x, y} ∈ E.

Definition 4 (n-colourable). A graph G = (V,E) is n-colourable it there exists
a colouring function γ : V → {1, . . . , n} such that for all x, y ∈ E with x 6= y,
γ(x) 6= γ(y).

For example, the following graph is 3-colourable with the colours white, grey and
black.

a

b

c

de

Now we can define Pn for positive integers n.

Pn: If every finite subgraph of G is n-colourable, then G is n-colourable.
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3 Theorem 6.10

Today, our goal is to show the following theorem from [1].

Theorem 5 (Theorem 6.10). P3 is equivalent to the Prime Ideal Theorem.

In order to prove Theorem 6.10, we first state and prove some auxiliary results.

Fact 6 (Fact 6.8).
Pn+1 =⇒ Pn

Proof of Fact 6. Let Gn = (V,E) be a graph such that every finite subgraph is n-
colourable. We are going to extend this graph in a fashion such that the extended
graph is (n+ 1)-colourable, and from that we can extract an n-colouring for G.

We choose a new vertex z /∈ V , which will have edges to all the vertices in V .
The new graph G+ := (V ∪ {z}, E ∪ {(x, z) : x ∈ V }) looks like this:

G+

G

z

x

y

Now, we want to show that G+ is (n+ 1)-colourable. Therefore, we look at finite
subgraphs of G+. A finite subgraph of G+ either contains only vertices of V , or
includes the vertex z. In the first case, the subgraph is n-colourable, and thus, also
(n + 1)-colourable. In the second case, we know that z has to have a different
colour than the other vertices because z is connected to all the other vertices. As
the subgraph of this subgraph without z is n-colourable, the subgraph with the
vertex z is (n + 1)-colourable with the n-colouring of before and z has the new
colour. Therefore, we can apply Pn+1 to G+, and obtain that G+ is (n + 1)-
colourable.

As mentioned before, z has to have a different colour than the rest of the vertices.
By leaving out that colour and ignoring the vertex z, we get an n-colouring of G.
This concludes the proof of Fact 6.8.

Lemma 7 (Lemma 6.9). The Ultrafilter Theorem implies Pn for all integers n.
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Proof of Lemma 7. LetG = (V,E) be a graph such that all finite subgraphs are n-
colourable. We define the set S to be the set of all functions f : V → {1, . . . , n}.
The idea of the proof is to define a filter over this set S, which we can extend to
an ultrafilter using the Ultrafilter Theorem. Then, we have to show that from this
ultrafilter we can extract an n-colouring for the graph G.

We start by defining the sets of n-colourings for finite subgraphs. For A ∈ fin(V ),
i.e. for a finite subset of V , we set

χA := {f ∈ S : f |A is an n-colouring of G|A}

For the empty set we have χ∅ = S. Now let

F := {X ⊆ S : ∃A ∈ fin(V ) s.t. χA ⊆ X}

We want to show that F is a filter. We are showing the properties of a filter step
by step:

1. ∅ /∈ F : since G is a graph where all finite subgraphs are n-colourable, χA

is not empty for all A ∈ fin(V ). Thus, ∅ /∈ F .

2. S ∈ F : for X = S, the condition is satisfied with A = ∅ because χ∅ = S.

3. (X ∈ F ∨ Y ∈ F)→ X ∪ Y ∈ F : w.l.o.g. we assume X ∈ F . Then there
exists an A ∈ fin(V ) such that χA ⊆ X . It also holds that χA ⊆ X ∪ Y .
Therefore, this condition is satisfied.

4. (X ∈ F ∧ Y ∈ F) → X ∩ Y ∈ F : if X, Y ∈ F , then there exist
A,B ∈ fin(V ) such that χA ⊆ X and χB ⊆ Y . The property follows
from the fact that χA∪B ⊆ X ∩ Y because χA∪B ⊆ χA ∩ χB. This is the
case because an n-colouring of the graph with vertices A ∪ B is also an
n-colouring for all its subgraphs. Thus, also for the subgraphs with vertices
A and B.

Using the UT , we can extend F to an ultrafilter U . From this ultrafilter we are
going to extract an n-colouring for G. First, we take a look at the functions from
S which map a certain vertex to a certain colour. In particular, for x ∈ V and for
i ∈ {1, . . . , n}, ux,i := {f ∈ S : f(x) = i}. These sets are a partition of S, i.e.

n⋃
i=1

ux,i = S,

and for i 6= j
ux,i ∩ ux,j = ∅.

Since the ux,i’s are disjoint for x ∈ V , and ∅ /∈ F , also not in U , we can con-
clude from the filter properties that either no ux,i is in U , or there exists one
i ∈ {1, . . . , n} such that ux,i ∈ U .

To show that we can find a colour for each x ∈ V , we take a look at the comple-
ment of ux,i, namely

ūx,i := {f ∈ S : f(x) 6= i}
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Because U is an ultrafilter, we have that eiter ux,i ∈ U , or ūx,i ∈ U . If there is
an ix ∈ {1, . . . , n} such that ux,i ∈ U , we have what we want. Now suppose that
ūx,i ∈ U for all i ∈ {1, . . . , n}. Then the intersection of all these sets is the empty
set, i.e.

⋂n
i=1 ūx,i = ∅, which is not in the ultrafilter U . However, because all the

ūx,i’s are in U , the intersection has to be in U as well, due to the filter properties.
Thus, we obtain a contradiction, and for all x ∈ V there exists an ix ∈ {1, . . . , n}
such that ux,ix ∈ U . This ix is unique because above we showed that there exists
at most one such colour. Note that the uniqueness also directly follows from Fact
6.5 (a).

At last, we can define the following n-colouring:

γ : V → n

x 7→ ix

This is indeed an n-colouring because for all finite sets A ∈ fin(V ), γ|A is an
n-colouring by construction of our ultrafilter. Thus, for x, y ∈ E with x 6= y,
γ(x) 6= γ(y). This concludes the proof of Lemma 6.9.

Knowing the Ultrafilter Theorem to be equivalent to the PIT , it suffices to show
that P3 implies UT . The converse implication follows by Lemma 7.
Hence, assuming P3, we show how a filter F over a set S can be extended to
an ultrafilter U . First, starting from the vertex set P(S), we construct a graph
GF = (VF , EF) in such a way that the vertices contained in F are colored in the
same color. We then show that every finite subgraph of GF is 3-colorable. We can
then define the ultrafilter U using the 3-coloring of GF we obtain from P3.

Proof of Theorem 6.10. Let S 6= ∅ and let F ⊆ P(S) be a filter over S. We
start with the graph G = (V,E) on the vertex set V := P(S) and edge set E
obtained by connecting every vertex u ⊆ S to its complement ū := S \ u, i.e.
E := {{u, ū} : u ∈P(S)}.
To G we add the fundamental triangle ∆: this consists of 3 connected vertices,
each colored differently, say one black (b), one white (w) and one gray (g).

We now connect every vertex in V with the gray vertex of ∆, and for each pair of
vertices u, v ⊆ S, u 6= v, we add the following graph:
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ū v̄ u ∩ v
b

x y

(†)

Nota bene: in each of these graphs, the vertex b is the black-colored vertex of ∆.

Lastly, we connect every vertex f ∈ F with the vertices (b) and (g) of ∆. The
resulting graph is GF = (VF , EF).

Up until now we did not pay much attention to coloring our graph, so now we turn
our focus to this, and show how to get every vertex in F to be colored white.
Notice first that for any vertex u ⊆ S and any vertex f ∈ F we have the following
situation:

P(S)

u

ū

F
f

f̄

We can see that by connecting every vertex u ⊆ S to the gray vertex of ∆, the two
vertices u and ū are colored either black or white. In particular, no vertex u ⊆ S
gets to be colored gray.
Similarly, for every pair u, v ⊆ S, the construction (†) guarantees that at least
one of ū, v̄ and u ∩ v is assigned the color white. Indeed, since ū, v̄, u ∩ v ⊆ S,
none of them is colored gray, and assuming all of them to be colored black would
imply that the vertices denoted in (†) by x and y would also be colored black, what
would constitute a contradiction.
Lastly, by connecting every vertex f ∈ F to both black and gray vertices of ∆,
makes sure that all the vertices in the filter F are colored white. Notice that by the
definition of a filter, this is in fact possible and does not lead to any contradictions.
Indeed, if f ∈ F then f̄ /∈ F , hence every triangle (f, f̄ , (g)) is well-colored, and
because f, h ∈ F implies f ∩ h ∈ F , the bottom row of vertices in (†) cannot all
be colored black. Hence the graph (†) is properly 3-colored, as argued above.
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We now state the following

Claim. Every finite subgraph of GF is 3-colorable.

Assuming this claim, the entire graph GF is 3-colorable by P3.
Let γ : VF → {g, b, w} be such a 3-coloring of GF , and define

U := {u ⊆ S : γ(u) = w}.

By the construction of GF , it holds that F ⊆ U , and we can also notice that since
∀u ⊆ S, {u, ū} ∈ EF , we have for each vertex u ⊆ S of GF that either u ∈ U or
ū ∈ U . Moreover, it holds that for any u, v ∈ U , also u ∩ v ∈ U (else the bottom
row of (†) would all be colored black, a contradiction as previously discussed).
Finally, from the definition of filter, S ∈ F . Hence the vertex S ∈ VF is colored
white and, in particular, ∅ /∈ U . This implies that if u ∈ U and u ⊆ v, then also
v ∈ U (indeed we would otherwise have v̄ = S \v ∈ U and hence u∩ v̄ = ∅ ∈ U ,
a contradiction). This shows that U is an ultrafilter extending F , proving the UT .

In order to fully complete the proof of the theorem, it remains to prove the claim.

From our construction, all vertices in F are necessarily colored white, while all
their complements have to be colored black. All other vertices u ⊆ S can be
colored either way, black or white. Therefore we can divide a finite set of vertices
A into those we already have colored, i.e. the vertices inF and their complements,
which we denote by F̄ := {ū : u ∈ F}, and those vertices whose color is yet to
be determined. Because we have a finite number of such vertices, we can verify
step by step what color to assign to each of them, obtaining a coloring which can
be extended to a 3-coloring of the subgraph.

Proof of Claim. Let A ⊆ VF be an arbitrary finite set of vertices of GF . Without
loss of generality we can assume that with every vertex u ⊆ S contained in A,
also ū ∈ A. We define

U := A ∩ F V := (A ∩P(S)) \ (F ∪ F̄).

These two sets are the vertices inA which are colored white and the set of vertices
for which we still have to choose their color, respectively.
Notice that since U is a finite subset of the filter F , it holds that ∅ 6=

⋂
U ∈ F ,

and since V is finite, V = {v0, ..., vk} for some k ∈ ω.

Define w0 := v0 ∩
⋂
U .

If w0 6= ∅, we color v0 white, else v̄0 is assigned the color white. Let us denote
by v̂0 the vertex we color white between v0 and v̄0.

Proceeding to v1, we define w1 := v1 ∩ v̂0 ∩
⋂
U .

Analogously as above, if w1 6= ∅, we assign the color white to v1, else to v̄1.

We can continue this way until all of the vertices of V are assigned a color, and
can therefore extend this coloring to a 3-coloring of the subgraph GF |A. Since A
was arbitrary, this shows that every finite subgraph of GF is 3-colorable.

�

This completes the proof of the theorem.
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A direct application of the theorem, together with Lemma 7 and Fact 6 shows the
following

Corollary. For all n,m ≥ 3 we have Pn ⇔ Pm.

It should be noted that it has been shown that P2 ⇒ P3 is not provable in ZF .

This is reminiscent of computational complexity theory. In this context, one can
prove that the problem n-col is a so called NP-complete problem for every n ≥ 3.
Intuitively speaking, this means that all these problems are equally hard to solve.
The 2-col problem, however, stands out for being the only problem (of this type)
for which we know an algorithm solving it, and intuitively is seen to be easier
than 3-col. It seems not possible, however, to reduce the 3-col problem to the
2-col one, what would answer the open question known as "P ?

= NP ".
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