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Das Auswahlaxiom B.5

König’s Lemma und weitere Choice-Prinzipien, 2. Teil

Ruben Scherrer

The goal of the second part of the presentation is to show further conditionals con-

cerning certain forms of choice.

1 Chain Antichain Principle

Firstly, we consider the so called Chain Antichain Principle. For this, recall the following

simple definitions:

Partially Ordered Set A set with a binary relation (P,≤) that is reflexive, anti-symmetric

and transitive.

Total Ordered Set A partially ordered set (P,≤) such that for all elements p, q ∈ P it is

p ≤ q or q ≤ p.

Comparable Two distinct elements p, q ∈ P of a partial order are comparable if either

p ≤ q or q ≤ p

Chain Nonempty subset C ⊆ P that is linearly ordered (i.e. C is a total order).

Antichain Nonempty subset A ⊆ P such that all elements in A are pairwise incompa-

rable (i.e. not comparable).

So for an easy example consider the powerset of {x, y, z} with ⊆ as partial ordering.

Here a chain is just the set of subsets on a path following arrows in the specified di-

rection, for example ∅ → {x} → {x, y} → {x, y, z}. Antichains are elements that
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are not connected via a path with arrows going in the specified direction, for exam-

ple {{x}, {y}, {z}} or also {{x}, {y, z}. In this case, all the nontrivial antichains are the

nonemtpy subsets of P({x, y, z}) that do not share any elements. With this background,

we can consider the Chain Antichain Principle:

Principle 1. (CaCP): Every infinite partially ordered set contains an infinite chain or

an infinite antichain.

It is easy to see that the RPP implies the CaCP (see the following theorem), which

implies that the CaCP is also a consequence of countable choice.

Theorem 1. RPP ⇒ CaCP

Proof. Let (P,≤) be an infinite partially ordered set and consider [P ]2, i.e. all the two-

element subsets of P .

We will define a partition of [P ]2 into two parts and use RPP to show that there is an

infinite chain or an infinite antichain.

C := {{x, y} ∈ [P ]2 : x ≤ y or y ≤ x} which is the set of 2-sets of comparable elements.

A := [P ]2 \ C which is the set of 2-sets of incomparable elements.

By definition, these two sets form a partition. Now colour C red and colour A blue,

then we have a 2-colouring of [P ]2 and can apply RPP to get an infinite subset Y ⊆ P

such that [Y ]2 is monochromatic (which means that the two-element subsets of Y belong

either all to C or all to A.) Then Y is either an infinite chain or an infinite antichain.

To see this more clearly, consider that if all the 2-element sets of a set are contained

fully in C, then all the elements are pairwise comparable which implies a linear ordering

and therefore a chain of maximal length.
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2 Choice on finite sets

Secondly we consider choice functions for finite sets (or more precisely for n-element

sets). Recall the following choice principle for n ∈ ω:

Principle 2. (C(∞, n) = Cn) Every family of n-element sets has a choice function.

(Note that this definition makes sense only for n > 0.) There are two important

things to say about this principle. First, without any further assumptions from ZF we

cannot prove Cn for any n ∈ ω, in particular we cannot prove C2 from ZF. Second, if we

have Cn for all n ∈ ω this does not imply Finite Choice! (These results follow from so

called permutation models, about which you will hear more in future sesseions of this

Seminar.) However, we can investigate the relations between Cn for different n ∈ ω. We

will prove the following relations:

� m,n ∈ ω,m|n⇒ (Cn ⇒ Cm) (”Downwards”)

� C2 ⇒ C4 (”Upwards”)

� Generalized: An ordered pair (m,n) satsifies some condition (S) (defined later),

then Ck for all k ≤ m implies Cn. (”Upwards”)

Let’s face them in this order. Consider the first fact, which implies that if we have

choice functions for a family of n-element sets, we also have choice functions for families

of p-element sets for any divisor p|n.

Proposition 1. m,n ∈ ω,m|n⇒ (Cn ⇒ Cm)

Proof. Let Fm := {Aλ : λ ∈ Λ} be an arbitrary family of m-element sets (note that we

use Λ as index set since the family must not be finite or even countable). Our goal is to

find a choice function on Fm.

Further, define k := n
m which is a positive integer by assumption and for any m-element

set Aλ ∈ Fm define the set

Akλ := {〈x, i〉 : x ∈ Aλ, i ∈ k}

Since any Aλ has cardinality m, the sets Akλ all have cardinality m · k = n. Then the

set of all these Akλ, i.e. Fn := {Akλ : λ ∈ Λ} is a family of n-element sets.

Therefore if we have Cn we have a choice function f : Fn →
⋃
Fn such that f(Akλ) ∈ Akλ.

So finally, we can define the choice function g : Fn →
⋃
Fm as follows:

g(Aλ) = x⇔ ∃i ∈ k st. f(Akλ) = 〈x, i〉
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So what we’re doing for the downwards-direction is basically just expanding our origi-

nal sets by any factor k and then using the choice function on the bigger set that implies

a unique element in the original set.

The upwards direction is more involved: We will first consider the set of 2-element

subsets of our original 4-sets and then use combinatorial properties to define a suitable

choice function.

Proposition 2. C2 ⇒ C4

Proof. Let again F4 = {Aλ : λ ∈ Λ} be an arbitrary family of 4-element sets, again our

goal is to find a choice function on F4. Now define the following set consisting of all

2-element subsets of Aλ for any λ ∈ Λ:

E2 =
⋃
{[Aλ]2 : Aλ ∈ F4}

This is a family of 2-element sets and therefore has a choice function by C2. Denote this

function f and note that if f is a choice function on E2 it is also a choice function on

any subset of E2. In particular for any A ∈ F4, f is a choice function on [A]2 ⊆ E2, i.e.

for any {x, y} ∈ [A]2 we have f({x, y}) ∈ {x, y}. Since A has 4 elements, the set [A]2

will have
(
4
2

)
= 6 elements. Denote for example A = {x0, x1, x2, x3}, then we have

[A]2 = {{x0, x1}, {x0, x2}, {x0, x3}, {x1, x2}, {x1, x3}, {x2, x3}}

Now consider f |[A]2 , which will meet 6 choices (one choice for any set in [A]2). Now

there is only a limited number of possibilities for the distribution of chosen elements:

� One element gets chosen three times.

� Three elements get chosen twice.

� Two elements get chosen twice and two elements get chosen once.

These cases are mutually exclusive and allow the definition of a suitable choice function

g on F4 as follows for any A ∈ F4:

1. One element x gets chosen three times, then set g(A) = x.

2. Three elements gets chosen twice, then one element y gets never chosen, then set

g(A) = y.

3. Two elements get chosen twice and two elements z1, z2 get chosen once, then set

g(A) = f({x, y})
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Finally, we can generalize the proof of the above proposition and meet statements

about more general upwards-direction implications. For this we need another definition:

Condition (S) An ordered pair 〈m,n〉 ∈ N × N satisfies condition (S) iff there is no

decomposition of n into a sum of primes p1, ..., ps such that ∀1 ≤ i ≤ s it is pi > m

(i.e. n =
∑s

i=1 pi).

Thus we set up the theorem:

Theorem 2. If an ordered pair 〈m,n〉 satisfies condition (S) and Ck holds for all k ≤ m,

then Cn holds as well.

Proof. We prove by induction over n. C1 holds trivially (choose the only element avail-

able). Then we set up the:

Induction Hypothesis: Let m < n (if m ≥ n, the statement holds automatically) such

that 〈m,n〉 satisfies condition (S) and Cl holds for all l < n. We will show that this

implies that also Cn holds in multiple steps:

1. Step: Investigate n: Since 〈m,n〉 satisfies (S), n itself cannot be prime (as otherwise

n = n > m). Further n has a prime factor smaller or equal to m, as otherwise

n = p+ ...+ p with p > m which contradicts condition (S). Since p is a factor of

n we can write n = kpa+1 with k, a ∈ N and coprime(k, p).

2. Step: Setup Goal: Consider Fn = {Aλ : λ ∈ Λ} arbitrary family of n-element sets.

Again our goal is to find a choice function f on Fn that, given A ∈ Fn, finds

f(A) = x ∈ A.

3. Step: Define Stuff: Let A ∈ Fn be an abitrary n-element set for which we want

to define f(A). Consider the set [A]p of p-element subsets of A. This set has

cardinality
(
n
p

)
. Since p ≤ m by induction hypothesis we have Cp and therefore

a choice function g : [A]p →
⋃

[A]p with g(X) ∈ X for X ∈ [A]p, in particular

g(X) ∈ A. Also note that an element a ∈ A can be chosen multiple times by the

choice function g, since it is contained in many different p-element subsets of A.

Further, define for any element a ∈ A the number q(a) of times that it gets chosen

by the choice function g. Define also q0 as the least nonzero q(a) for any a ∈ A
(which must be at least one and at most

(
n
p

)
). And finally define B as the set

of all elements of A such that q(a) = q0 holds, which is a nonempty subset of A.

Summary:

q(a) := |{X ∈ [A]p : g(X) = a}|

q0 := min{q(a) : a ∈ A, q(a) 6= 0}

B := {a ∈ A : q(a) = q0}

For visualizing these definitions, recall the situation in the last proof: We had

A = {x0, x1, x2, x3} being a 4-element subset, which fits the situation perfectly for
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〈m,n〉 = 〈2, 4〉 and p = 2. Then we have for example the case q(x0) = 3, q(x1) =

1, q(x2) = 2, q(x3) = 0 which would fall into the first case of the three cases at the

end of the proof (i.e. one element gets chosen three times). Then q0 would be 1

and B = {x1}.

4. Step: Show A \B is nonempty: For proving this claim recall the properties from

step 1. In particular we have(
n

p

)
=

n!

p!(n− p)!
=
kpa+1

p
· (n− 1) · ... · (n− p+ 1)

(p− 1)!
= kpa

(
n− 1

p− 1

)
But then, since p 6 |

(
n−1
p−1
)

we get that pa|
(
n
p

)
but pa+1 6 |

(
n
p

)
which further implies

that n = kpa+1 cannot divide
(
n
p

)
.

Now assume for a contradiction that A \ B = ∅, then all the elements a ∈ A

get chosen the same amount of times by g and therefore |[A]p| =
(
n
p

)
= nq0

and therefore n must be a divisor of
(
n
p

)
which contradicts the last paragraph.

Therefore A\B must be nonempty. Now define |B| = l1 and |A\B| = l2 and note

that l1, l2 > 0 and l1 + l2 = n.

Step 5: Show that 〈m, l1〉 or 〈m, l2〉 satisfy (S): Assume for a contradiction that neither

〈m, l1〉 nor 〈m, l2〉 satisfy (S). Then there are decompositions l1 = p1 + ... + ps

and l2 = p′1 + ...+ p′t with pi, p
′
i > m. But then we get that n =

∑s
i=1 pi +

∑t
i=1 p

′
i

which contradicts our assumptions.

Step 6: Define Choice Function Let i ∈ {1, 2} such that 〈m, li〉 satisfies (S) according

to the last step. Then by assumption Cli holds and there is a choice function f ′

that chooses an element of B if i = 1 or an element of A \ B if i = 2. Therefore

we can define our choice function f to send A 7→ f(A) = f ′(A) ∈ A.

Now, what does this theorem mean? Firstly, it does NOT mean that if we have

Ck for k the prime decomposition of a number n, that it follows Cn (see the simple

counterexample 12 = 3 · 22 but 12 = 5 + 7). However, it does mean that if n itself is

not prime, then Ck for all k < n implies that Cn holds (using the ordered pair 〈n− 1, n〉
which must satisfy (S) by n not being prime). But even more can be derived: If n is not

prime and Ck holds for all k ≤ bn/2c, then Cn holds (using the ordered pair 〈bn/2c, n〉
that satisfies condition (S) as the composition of n into a sum of primes larger than

bn/2c cannot consist any prime twice.) On the other hand, it can be shown that if

〈m,n〉 don’t satisfy condition (S), it is possible that Ck holds for all k ≤ m but Cn fails.

This means, in particular, that if n is a prime, there is no conjunction of Ck with k < n

that would imply Cn.
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