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Preliminaries

Theorem 0.0.1. (Cantor-Bernstein Theorem) Let A and B be any sets. If |A| < |B| and |A| > |B|,
then
Al = [B.

Corollary 0.0.2. (Finite Ramsey Theorem) For all m,n,r € w, where r > 1 and n < m, there erists
an N € w, where N > m, such that for every colouring of [N|™ with r colours, there exists a set H € [N]™,
all of whose n-element subsets have the same colour.

Definition 0.0.3. For any n € w and any set S, let [S]™ denote the set of all n-element subsets of S. Slightly
more formally,
[S]" := {z € P(S) : there exists a bijection between x and n}.

Definition 0.0.4. The set of all finite subsets of a set S denoted by fin(.S) is given by

new
Fact 0.0.5. Let m be a cardinal and let A be a set of cardinality m. Then
o 2" = [P(A)
e fin(m) := |fin(A)|
e fin(A) C P(A)
Fact 0.0.6. If m is an infinite cardinal, then

2N0 S 2ﬁn(m)



Statement & Proof

Lemma 0.0.7. (Lauchli’s Lemma) If m is an infinite cardinal, then
<2ﬁn(m)>N0 _ ofin(m)

Proof. In order to prove the Lemma, we have to show that 2i»(m) < (2ﬁ“(m))NO and 2fin(m) > (2ﬁ“(m))N0 and
conclude with the Cantor-Bernstein Theorem (0.0.1)).

Claim: 2fin(m) < (fin(m))Ro
Proof: this inequality is obviously true. O

Claim: 2ﬁn(m) > (2ﬁn(m))N0
Proof: Let A be an arbitrary, but fixed set of cardinality m. To prove this inequality, we will define several
functions and use their properties to construct an injection from P(fin(A4))* into P(fin(A)).

We start by defining the help functions. For n, k € w such that k > n, we define for any X C [A]™
Gk (X) :={yc[A":Vze [Af(y C 2 — Fr € X(x C 2))}
dnﬁk(X) = gn,k(X) \X

Essentially, any y € g, x(X) is an n-element subset of A such that when you add any k& —n new elements to
Yy, it covers an x € X. This also means that X C g, x(X), which will be seen in a little more detail soon.

Example 0.0.8. n =2k =3, {a1,a2} € [A]? and X = {{a1, 2} : 2 € A\ {a1,a2}}.

In this case, y = {a1, az} will cover an element of X no matter what we add and thus, g2 3(X) contains all
2-element sets that contain a;. Any other element of [A]? can be complemented with an element that is not
a; and thus does not cover an element of X and is not an element of g, 3(X). Hence, we have

923(X) ={y € [AP? : a1 € y} and da 3(X) = {{a1,a2}}.

Example 0.0.9. n =2k =4, {a1,a2} € [4]? and X = {z € [A)* : N {a1,a2} = 0}.
Note that any 4-element subset of A thus contains an element of X as a subset. So

92.4(X) = [A? and Y := da4(X) = {y € [A]" : y N {a1, a2} # 0}
Arguing similarly to the previous example, we get g2 4(Y) =Y which means dg 4(Y) = d24(d2,4(X)) = 0.
We will prove and use the following properties of g, 5 and d,, j:
1. For all X C [A]™ we have X C g, (X)
2. For all X C [A]™ we have ¢p k(gn.k(X)) = gn.k(X), 1-€. Gnk © nk = Gn.k
3. For all X C [A]"™ we have gy, 1 (X) C gn i’ (X) whenever k¥’ > k



4. For all X C [A]" we have dZL,k(X) = (gn,k ° di;,k) (X)\ dffkl (X)

5. For all X C [A]" we have d”, (X) = (gmk o dg’k> (X)

6. I, C I, whenever &' > k

where

Proof: In order to prove X C g, 1(X) for all X C [A]", observe that for any z € X, z € [A]* such
that x C z, we have © C 2z so © € g, x(X). Thus, X C g, x(X) giving us 1.

Next, we are going to prove that for all X C [A]" we have gp 1(gnk(X)) = gnx(X). Therefore observe
that for any y € gn k(gn.k(X)), 2 € [A]* such that y C 2, we have a ¥’ € g,, x(X) such that y' C 2. By defi-
nition of gp 1 (X) we have an z € X such that z C z and we get y € g 1(X). Thus, gn k0 gnk(X) C gnk(X)
together with 1. this proves 2.

In the following, we want to prove that g, x(X) C g (X) whenever k' > k for all X C [A]". Note that
for any y € gn 1 (X), any k’-element superset z of y contains a k-element superset 2’ of y, i.e. y C 2/ C z.

Thus, by definition of ¢, x(X) we have an x € X such that  C 2z’ C z and we conclude y € g, . Hence, for
X C A", gnkx(X) C gn i (X) and we have 3.

Next, we want to prove that for all X C [A]" we have di,k(X) = (gnk © dflk)(X) \ df:rkl(X). If we de-
fine via induction dﬁ:rkl = d”’k ) d{hk with d?h,? the identity map, we get dffkl = (gnk © d{%k) \ df‘%k as
fo‘r any X C [A]” we have dﬁ;f(X}) = dn,k(dzhk(X)) = gmk(d%’k(X)) \ @) ,(X). By 1. we have that
& (X) C gnwod  (X) giving us &, (X) = (gnx o, ,)(X) \ & (X) which is 4.

In order to prove d, ,(X) = (gnyk ody ) (X) for all X C [A]", we show a combinatorial result by ap-
plying the Finite Ramsey Theorem (0.0.2) in a first step. The claim follows in a second step by applying
the first result. For fixed n,k € w with k > n, for U C A with |U| < n, and for any X € [A]", we define the
following statements (U, X, W) and ¢(U, X) as

V(U,X,W)=W CA\UAYV e W V(U UV e X)
o(U, X)=VYmewIW CA(W| >mAyp(U, X, W))

In essence, (U, X, W) means that W and U are disjoint subsets of A and that constructing an n-element
subset of A by adding elements from W to U always results in an element of X. Additionally, o(X,U)
means that for any finite cardinality m you can find such W with cadinality greater than m. Notably, for
any U € X, W C A\ U we thus have ¢ (U, X, W) as nothing needs to be added.

Example 0.0.10. Let n =2,k =4 and X as in so X = {{a1,2} : x € A\ {a1,a2}}, additionally let
be A\ {a1,az} and U = {ay,b}, as U U{ay,az} # 0 we have U € dp 4 and thus ¢(U, d2 4(X)).

Further, let U’ = {b}, as adding any element to U’ that is not a;,as or b makes it an element of X we get
for any m € w,m > 1, W € [A\ {a1, ag,b}]™ that ¥(U’, X, W) holds and we get o(U’, X).

Claim 1: If we have ¢(U,d,, (X)), then there is a set U’ with |U’| < |U| such that we have p(U’,X). In
particular, we see that ¢(0, d, , (X)) fails.

Proof 1: Assume that (U, d,, (X)) holds for U C A with |U| < n and some set X C [A]". It is enough
to show that for any integer m > k there is a proper subset U’ of U and W € [A]™ such that ¢(U’, X, W)
holds. Indeed, we find that o(U’, X) holds.



By the Finite Ramsey Theorem (0.0.2)), for all p,i,j € w, where 7 > 1 and ¢ < p, there exists a smallest

integer N, ; ; > p such that for each j-colouring of [N,,; ;]* there is an p-element subset of N, ; ;, all of whose

i-element subsets have the same colour. Now let p > k, p' := max{N, ;2 :0 <7 <n} and p” := Ny p_or,
where r = |U|. Note that
prep>p>k>n>r

By
(U, dp k(X)) =VmewIW CA(W| >mAY(U,d,k(X),W))

there exists a set S C A with |S| = p” such that the statement
YU, dp x(X),S) =S C AUAVV €[S WU UV e d, (X))
holds. In particular, S C A\U. For every subset U’ of U the set denoted by X (U’) is defined by
XU)={yes:3v'cy(U'uVv’ e X)}.

Claim: Uy X(U') = [S]*7
Proof: First, let P € Uy -y X(U’). Then by definition of X (U’), P clearly is an element of [S]"7". Next,
let P € [S]k_r. From above, we know that the following statement holds

O(U, dn i (X),8) =5 C AUAV € [S]" "N U UV e d, (X)) (1)
Since P C S and because of the first half of the statement, we can conclude that P N U = (. Therefore,
[UUP|=|U|+|Pl=r+k—-r=k

as |U| = r. Note that P is a subset of A\U as well. Additionally, since the second half of the statement

holds for any V € [S]nilU‘, V' can also be an element of [P]”f‘Ul and the statement is still true, i.e.

G(U,dpi(X),P) =P CAUAVV € [P]" PN U UV € d, (X)) (2)
By assumption, k > n which yields that &k —r > n — r. Hence, there is a set @ € [P]*". In particular,
UUQ €dni(X)=gni(X)\X={yec[A]":Vze [Af(yCz—3Fr e X(x C 2)) \X.

Since UUQ C U U P, by definition of gy, ,(X) there exists © € X such that t CUUP. If welet U' =UnNx
and V' = PNz, then we have found a V' C P such that U’ UV’ € X. Hence, by definition of X (U’),
PeX(U')CUpey XU O

Since |S| = p” = Ny j_rar > p/, there is a set T € [S]? and a set U’ C U such that

[T < X (U").
Note that [T]*~" # () since p’ > k > r implies that p’ > k — . Moreover, by definition of X (U’) we have
[T)F=" C [S]*=". Next, let s = |U’|, Z := {V" € [T|""*: U'UV" € X} and Z' := [T]"*\Z. Further,
because |T'| = p' > Npp—s2 > p, there is a set W € [T]? such that either

W]"™*CZ or [W]"*CZ.

Additionally, we note that each element w of [W]¥~" is an element of [T]*~" and therefore also an element
of X(U’). Thus, by definition of X (U’) there is a V' C w such that

U'uV' e X.



Since each element of X has cardinality n and |U’| = s, there exists a subset V" of V/ with |[V"| =n —s
and U'NV"” = ) such that
U'uv”eX.

Note that V" C w € [W]*~" implies that V" € [W]"~%. Moreover, since [W]*~* C [T|"~* we also have that
V" € [T]"* and therefore, V" € Z. In particular, Z N [W]"* # ( and thus, [W]"~* C Z. Finally, the
statement ,

VUL X, W)=W C AU AW e W VT uv e X). (3)

holds, where |W| = p.

Claim: U' #U
Proof by contradiction: First, we note that the following statement holds

WU, dp 1 (X),8) =8 C AUAYY € [S]" VU UV € dy (X)) (4)

Since W C S, W is also a subset of A\U. Additionally, since the second half of the statement holds for
any V € [S]n_lm7 V can also be an element of [W]n_‘Ul

and the statement is still true. Thus,
DU, dp o (X), W)= W C AUAVV € W] VU UV € d,1(X)). (5)
holds as well. Now we assume that U’ = U. Then by we also have
VU,X,W)=W C AUAV e W] WU uv e X). (6)
By comparing and @, we note that we can summarize these two statements as follows
WU,y (X)NX, W) =W C AUAVY € W]" WU UV € d, 1 (X)NX).

But by definition, d, j is given by g, x(X)\X which yields that d,, x(X) N X = (. Hence, both U and V are
equal to the empty set. Therefore, the set [W]" " is empty which is only the case when |[W| < n —r. But
this is a contradiction because |W|=p > k > n > r > 0 which means in particular, that [W| > n —r. Thus,
U +£U. O

Claim 2: If dil,k(X) # () for some set X C [A]", then | < n.

Proof 2: Let U € dfhk(X) C [A]™. This implies that we have (U, di,,k(X),W) for every W € A\U and
consequently (U, d!, , (X)), as we have already seen right before Example . Note that dln’ p(X) =
(dnx o dil_kl)(X) Hence, we can apply Claim 1 to ¢(U, (dnk(dil_k1 (X))) and obtain that there is a set U’
with |U’| < |U| such that we have ¢(U, dﬁl_,i (X)). By iterating this process I — 1 times, we get a sequence
U=U,U = U, - ,Up with |U;j| < |Uj41|. Thus, |U;| > j for all j € {0,---,l}. In particular,
|U| = |Ui| > I. Since |U| = n, we obtain that [ < n. O

As a consequence of 4. and Claim 2 we get dy;, , (X) = (gn.k Odz,k)(X)\decl (X) = (gn,kody; 1, )(X), which is 5.
Finally, we are going to show that I, C I, whenever ¥’ > k. Therefore let ¥ > k, X € I, by 1.
we get X C g, 1(X) and by 3. we get gy 1(X) C gn 1 (X) = X and thus X C I, ;, and we get I, p» C Ipp i
whenever k' > k. O
Now, we can define a further function f, ; : P ([A]") — P ([A]¥) by:

far(X)={z€[A]f:Tr e X(z C z)}.

Consider now fnk = frklr, .-



Claim: f,  is injective.

Proof: Let X, X’ € I, so we have X = g, x(X), X' = g, x(X’), such that f, x(X) = fur(X’). Now let
r € X, for any z € [A]* such that © C 2 we have z € f,, x(X) = fnx(X’) which means 3z’ € X such that
2’ C z and thus z € g, 1(X’) = X’ and we have X C X’. Analogously, we obtain X’ C X and can conclude
that X = X'. O

So for the sets in I, ; we can define the inverse of fn,k via:
fn_lle(ﬁlk(X)) =X.

Now we have all the tools needed to construct an injective function F' from P(fin(A4))* into P(fin(A)). Let
X € P(fin(A))¥, i.e. X ={X;:s € w} where for any s € w: Xy € P(fin(A4)) (note X is uniquely determined
by the X). We then define F as follows:

F(X) = U U U fn,k(s,n,j) © gn,k(s,n,n) o le7k(s,n,n) (Xs N [A]n) s

scwnew \0<j<n

where we have k(s,n,j) = 2%-3" - 5/. By definition, F' is a function from P(fin(A))“ to P(fin(4)) so we
will show that F' is injective by showing that a given F'(X) has a unique element in it’s preimage, working
backwards from F'(X). To help with legibiliy we will introduce some new notation:

Xom = XA [A]"
XS»”J = 9n,k(s,n,n) © dzz,k(s,n,n) (Xs,n)
Ys,n,j = fn,k(s,n,j)(Xs,n,j)

This gives us the simplified expression:

F)=UU | U You,

scwnew \0<j<n

As Y nj is in the image of f, j(sn,;), We have Y, , ; C F(X)nN [A]k(sm3) | Combined with the fact that
(s,m,j) — k(s,n,j) is an injective map, we get

Yoy = F(X) N[

and is thus uniquely determined by F'(X). We observe now that by 2. we have g, i(s,n,n) (Xsn.j) = Xsn,j-
Thus, X n; € Ly k(snm)- Additionally, as j < n we have k(s,n,j) < k(s,n,n). So 6. then implies that
Xsnj € Lnk(s,nn) C Ink(s,n,j) and is then in the domain of f~1. Tt follows that

Xsanvj = frz_,llc(s,n,j) ()/37n1j)'

is the identity and using 4. we get

X = d('r)L,k(s,n,n) (Xsn)
= (gn,k(s,n,n) © d?t,k:(s,n,n) (Xs,n)) \ d'}t,k(s,n,n(XS,n)
= Xsn0 \ d:z,k(s,n,n) (Xs’n)
= Xsn0 \ ((gn,k(s,nm) © drlz,k(s,n,n)(Xs,n)) \di,k(s,n,n(XS,n))
= Xsn0 \ (XS,n,l \di,k(s,n,n(XS,n))

0
Now as dn7k(5,n7n)

= Xsn0 \ (Xs,n,l \ ( .- (Xs’n,nfl \ dz,k(s,n,n(Xs,n)) s ))
= Xeno\ Kena \ (oo Xamn1 \ Xenm) ),



where in the last step we used 5. Thus, the X, are also uniquely determined. And since X, € P(fin(A)),
we have

X, = U Xy

necw

Thus it, and consequently X, are uniquely determined and we find F' to be injective. This shows us that
R
[P(fin(A))*| = (2) 7 < [P(fin(4))| = 2.
(Il

Hence, we have proven that 2fin(m) < (2ﬁ“(‘“))NO and 2fin(m) > (Qﬁ“(m))No. Finally, we have the desired
result by the Cantor-Bernstein Theorem namely

2ﬁn(m) _ (2ﬁn(m) ) Rg )

O

Theorem 0.0.11. If m is an infinite cardinal, then

oMo . 92" — 927,
In particular, we get

227 4227 =277,
Proof. In order to prove equality we have to show that 22" < 2®0 . 22" and 22" > 2R . 92",
Claim: 22" < 2R . 22"
Proof: this inequality is clearly true. (]

Claim: 22" > 2% . 22"
Proof: Let A be a set of cardinality m, inf(A) := P(A)\fin(A) and inf(m) := |inf(A)|. Then by Fact (0.0.5)

2" = P(A)] = [fin(A)[ + [P(A)] — [fin(A)] = [fin(A)[ + [P(A)\fin(A)]
= fin(m) + |P(A)\fin(A4)| = fin(m) + |inf(A)| = fin(m) + inf(m).

Hence,
22"' _ 2ﬁn(m)+inf(m) _ 2ﬁn(m) . 2inf(m).

Furthermore, Liuchli’s Lemma and Fact yield

22m — 2ﬁn(m) . Qinf(m) — (Qﬁn(m))2 . Zinf(m) — 2ﬁn(m) . (2ﬁn(m) . 21nf(m)) — 2ﬁn(m) . 22"‘ Z 2&0 . 22"‘.

Thus, by the Cantor-Bernstein Theorem (|0.0.1|)

R0, 92" _ 927
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