$\operatorname{Seminar}$

Axiom of Choice

$2^{2^{\mathfrak{m}}} + 2^{2^{\mathfrak{m}}} = 2^{2^{\mathfrak{m}}}$, whenever \mathfrak{m} is infinite

April 1, 2020

Authors Lukas Pierce & Elena Steinrisser Supervised by Lorenz J. Halbeisen

Preliminaries

Theorem 0.0.1. (Cantor-Bernstein Theorem) Let A and B be any sets. If $|A| \leq |B|$ and $|A| \geq |B|$, then

$$|A| = |B|.$$

Corollary 0.0.2. (Finite Ramsey Theorem) For all $m, n, r \in \omega$, where $r \ge 1$ and $n \le m$, there exists an $N \in \omega$, where $N \ge m$, such that for every colouring of $[N]^n$ with r colours, there exists a set $H \in [N]^m$, all of whose n-element subsets have the same colour.

Definition 0.0.3. For any $n \in \omega$ and any set S, let $[S]^n$ denote the set of all *n*-element subsets of S. Slightly more formally,

 $[S]^n := \{ x \in \mathcal{P}(S) : \text{there exists a bijection between } x \text{ and } n \}.$

Definition 0.0.4. The set of all finite subsets of a set S denoted by fin(S) is given by

$$fin(S) := \bigcup_{n \in \omega} [S]^n.$$

Fact 0.0.5. Let \mathfrak{m} be a cardinal and let A be a set of cardinality \mathfrak{m} . Then

- $2^{\mathfrak{m}} := |\mathcal{P}(\mathbf{A})|$
- $\operatorname{fin}(\mathfrak{m}) := |\operatorname{fin}(A)|$
- $\operatorname{fin}(A) \subset \mathcal{P}(A)$

Fact 0.0.6. If \mathfrak{m} is an infinite cardinal, then

$$2^{\aleph_0} \leq 2^{\operatorname{fin}(\mathfrak{m})}.$$

Statement & Proof

Lemma 0.0.7. (Läuchli's Lemma) If m is an infinite cardinal, then

$$\left(2^{\operatorname{fin}(\mathfrak{m})}\right)^{\aleph_0} = 2^{\operatorname{fin}(\mathfrak{m})}.$$

Proof. In order to prove the Lemma, we have to show that $2^{\operatorname{fin}(\mathfrak{m})} \leq (2^{\operatorname{fin}(\mathfrak{m})})^{\aleph_0}$ and $2^{\operatorname{fin}(\mathfrak{m})} \geq (2^{\operatorname{fin}(\mathfrak{m})})^{\aleph_0}$ and conclude with the Cantor-Bernstein Theorem (0.0.1).

Claim: $2^{\operatorname{fin}(\mathfrak{m})} \leq (2^{\operatorname{fin}(\mathfrak{m})})^{\aleph_0}$ Proof: this inequality is obviously true.

Claim: $2^{\operatorname{fin}(\mathfrak{m})} > (2^{\operatorname{fin}(\mathfrak{m})})^{\aleph_0}$

Proof: Let A be an arbitrary, but fixed set of cardinality \mathfrak{m} . To prove this inequality, we will define several functions and use their properties to construct an injection from $\mathcal{P}(\operatorname{fin}(A))^{\omega}$ into $\mathcal{P}(\operatorname{fin}(A))$.

We start by defining the help functions. For $n, k \in \omega$ such that $k \ge n$, we define for any $X \subseteq [A]^n$:

$$g_{n,k}(X) := \{ y \in [A]^n : \forall z \in [A]^k (y \subseteq z \to \exists x \in X (x \subseteq z)) \}$$
$$d_{n,k}(X) := g_{n,k}(X) \setminus X$$

Essentially, any $y \in g_{n,k}(X)$ is an *n*-element subset of A such that when you add any k - n new elements to y, it covers an $x \in X$. This also means that $X \subseteq g_{n,k}(X)$, which will be seen in a little more detail soon.

Example 0.0.8. $n = 2, k = 3, \{a_1, a_2\} \in [A]^2$ and $X = \{\{a_1, x\} : x \in A \setminus \{a_1, a_2\}\}$. In this case, $y = \{a_1, a_2\}$ will cover an element of X no matter what we add and thus, $g_{2,3}(X)$ contains all 2-element sets that contain a_1 . Any other element of $[A]^2$ can be complemented with an element that is not a_1 and thus does not cover an element of X and is not an element of $g_{2,3}(X)$. Hence, we have

$$g_{2,3}(X) = \{y \in [A]^2 : a_1 \in y\} \text{ and } d_{2,3}(X) = \{\{a_1, a_2\}\}.$$

Example 0.0.9. $n = 2, k = 4, \{a_1, a_2\} \in [A]^2$ and $X = \{x \in [A]^2 : x \cap \{a_1, a_2\} = \emptyset\}$. Note that any 4-element subset of A thus contains an element of X as a subset. So

$$g_{2,4}(X) = [A]^2$$
 and $Y := d_{2,4}(X) = \{y \in [A]^2 : y \cap \{a_1, a_2\} \neq \emptyset\}.$

Arguing similarly to the previous example, we get $g_{2,4}(Y) = Y$ which means $d_{2,4}(Y) = d_{2,4}(d_{2,4}(X)) = \emptyset$. We will prove and use the following properties of $g_{n,k}$ and $d_{n,k}$:

- 1. For all $X \subseteq [A]^n$ we have $X \subseteq g_{n,k}(X)$
- 2. For all $X \subseteq [A]^n$ we have $g_{n,k}(g_{n,k}(X)) = g_{n,k}(X)$, i.e. $g_{n,k} \circ g_{n,k} = g_{n,k}$
- 3. For all $X \subseteq [A]^n$ we have $g_{n,k}(X) \subseteq g_{n,k'}(X)$ whenever $k' \ge k$

- 4. For all $X \subseteq [A]^n$ we have $d_{n,k}^j(X) = \left(g_{n,k} \circ d_{n,k}^j\right)(X) \setminus d_{n,k}^{j+1}(X)$
- 5. For all $X \subseteq [A]^n$ we have $d_{n,k}^n(X) = \left(g_{n,k} \circ d_{n,k}^n\right)(X)$
- 6. $I_{n,k'} \subseteq I_{n,k}$ whenever $k' \ge k$

where

$$I_{n,k} := \{X \subseteq [A]^n : g_{n,k} = X\}$$

Proof: In order to prove $X \subseteq g_{n,k}(X)$ for all $X \subseteq [A]^n$, observe that for any $x \in X$, $z \in [A]^k$ such that $x \subseteq z$, we have $x \subseteq z$ so $x \in g_{n,k}(X)$. Thus, $X \subseteq g_{n,k}(X)$ giving us 1.

Next, we are going to prove that for all $X \subseteq [A]^n$ we have $g_{n,k}(g_{n,k}(X)) = g_{n,k}(X)$. Therefore observe that for any $y \in g_{n,k}(g_{n,k}(X))$, $z \in [A]^k$ such that $y \subseteq z$, we have a $y' \in g_{n,k}(X)$ such that $y' \subseteq z$. By definition of $g_{n,k}(X)$ we have an $x \in X$ such that $x \subseteq z$ and we get $y \in g_{n,k}(X)$. Thus, $g_{n,k} \circ g_{n,k}(X) \subseteq g_{n,k}(X)$ together with 1. this proves 2.

In the following, we want to prove that $g_{n,k}(X) \subseteq g_{n,k'}(X)$ whenever $k' \geq k$ for all $X \subseteq [A]^n$. Note that for any $y \in g_{n,k}(X)$, any k'-element superset z of y contains a k-element superset z' of y, i.e. $y \subseteq z' \subseteq z$. Thus, by definition of $g_{n,k}(X)$ we have an $x \in X$ such that $x \subseteq z' \subseteq z$ and we conclude $y \in g_{n,k'}$. Hence, for $X \subseteq [A]^n$, $g_{n,k}(X) \subseteq g_{n,k'}(X)$ and we have 3.

Next, we want to prove that for all $X \subseteq [A]^n$ we have $d_{n,k}^j(X) = (g_{n,k} \circ d_{n,k}^j)(X) \setminus d_{n,k}^{j+1}(X)$. If we define via induction $d_{n,k}^{j+1} := d_{n,k} \circ d_{n,k}^j$ with $d_{n,k}^0$ the identity map, we get $d_{n,k}^{j+1} := (g_{n,k} \circ d_{n,k}^j) \setminus d_{n,k}^j$ as for any $X \subseteq [A]^n$ we have $d_{n,k}^{j+1}(X) = d_{n,k}(d_{n,k}^j(X)) = g_{n,k}(d_{n,k}^j(X)) \setminus d_{n,k}^j(X)$. By 1. we have that $d_{n,k}^j(X) \subseteq g_{n,k} \circ d_{n,k}^j(X)$ giving us $d_{n,k}^j(X) = (g_{n,k} \circ d_{n,k}^j)(X) \setminus d_{n,k}^{j+1}(X)$ which is 4.

In order to prove $d_{n,k}^n(X) = (g_{n,k} \circ d_{n,k}^n)(X)$ for all $X \subseteq [A]^n$, we show a combinatorial result by applying the Finite Ramsey Theorem (0.0.2) in a first step. The claim follows in a second step by applying the first result. For fixed $n, k \in \omega$ with $k \ge n$, for $U \subseteq A$ with $|U| \le n$, and for any $X \in [A]^n$, we define the following statements $\psi(U, X, W)$ and $\varphi(U, X)$ as

$$\psi(U, X, W) \equiv W \subseteq A \setminus U \land \forall V \in [W]^{n-|U|} (U \cup V \in X)$$

$$\varphi(U, X) \equiv \forall m \in \omega \; \exists W \subseteq A(|W| \ge m \land \psi(U, X, W))$$

In essence, $\psi(U, X, W)$ means that W and U are disjoint subsets of A and that constructing an *n*-element subset of A by adding elements from W to U always results in an element of X. Additionally, $\varphi(X, U)$ means that for any finite cardinality m you can find such W with cadinality greater than m. Notably, for any $U \in X$, $W \subseteq A \setminus U$ we thus have $\psi(U, X, W)$ as nothing needs to be added.

Example 0.0.10. Let n = 2, k = 4 and X as in 0.0.9, so $X = \{\{a_1, x\} : x \in A \setminus \{a_1, a_2\}\}$, additionally let $b \in A \setminus \{a_1, a_2\}$ and $U = \{a_1, b\}$, as $U \cup \{a_1, a_2\} \neq \emptyset$ we have $U \in d_{2,4}$ and thus $\varphi(U, d_{2,4}(X))$.

Further, let $U' = \{b\}$, as adding any element to U' that is not a_1, a_2 or b makes it an element of X we get for any $m \in \omega, m \ge 1, W \in [A \setminus \{a_1, a_2, b\}]^m$ that $\psi(U', X, W)$ holds and we get $\varphi(U', X)$.

Claim 1: If we have $\varphi(U, d_{n,k}(X))$, then there is a set U' with |U'| < |U| such that we have $\varphi(U', X)$. In particular, we see that $\varphi(\emptyset, d_{n,k}(X))$ fails.

Proof 1: Assume that $\varphi(U, d_{n,k}(X))$ holds for $U \subseteq A$ with $|U| \leq n$ and some set $X \subseteq [A]^n$. It is enough to show that for any integer $m \geq k$ there is a proper subset U' of U and $W \in [A]^n$ such that $\psi(U', X, W)$ holds. Indeed, we find that $\varphi(U', X)$ holds. By the Finite Ramsey Theorem (0.0.2), for all $p, i, j \in \omega$, where $j \geq 1$ and $i \leq p$, there exists a smallest integer $N_{p,i,j} \geq p$ such that for each *j*-colouring of $[N_{p,i,j}]^i$ there is an *p*-element subset of $N_{p,i,j}$, all of whose *i*-element subsets have the same colour. Now let $p \geq k$, $p' := \max\{N_{p,i,2} : 0 \leq i \leq n\}$ and $p'' := N_{p',k-r,2^r}$, where r = |U|. Note that

$$p'' \ge p' \ge p \ge k \ge n \ge r.$$

By

$$\varphi(U, d_{n,k}(X)) \equiv \forall m \in \omega \; \exists W \subseteq A \left(|W| \ge m \land \psi(U, d_{n,k}(X), W) \right)$$

there exists a set $S \subseteq A$ with |S| = p'' such that the statement

$$\psi(U, d_{n,k}(X), S) \equiv S \subseteq A \setminus U \land \forall V \in [S]^{n-|U|} (U \cup V \in d_{n,k}(X))$$

holds. In particular, $S \subseteq A \setminus U$. For every subset U' of U the set denoted by X(U') is defined by

$$X(U') = \left\{ Y \in [S]^{k-r} : \exists V' \subseteq Y(U' \cup V' \in X) \right\}.$$

Claim: $\bigcup_{U' \subset U} X(U') = [S]^{k-r}$

Proof: First, let $P \in \bigcup_{U' \subset U} X(U')$. Then by definition of X(U'), P clearly is an element of $[S]^{k-r}$. Next, let $P \in [S]^{k-r}$. From above, we know that the following statement holds

$$\psi(U, d_{n,k}(X), S) \equiv S \subseteq A \setminus U \land \forall V \in [S]^{n-|U|} (U \cup V \in d_{n,k}(X)).$$
(1)

Since $P \subset S$ and because of the first half of the statement, we can conclude that $P \cap U = \emptyset$. Therefore,

$$|U \cup P| = |U| + |P| = r + k - r = k$$

as |U| = r. Note that P is a subset of $A \setminus U$ as well. Additionally, since the second half of the statement (1) holds for any $V \in [S]^{n-|U|}$, V can also be an element of $[P]^{n-|U|}$ and the statement is still true, i.e.

$$\psi(U, d_{n,k}(X), P) \equiv P \subseteq A \setminus U \land \forall V \in [P]^{n-|U|} (U \cup V \in d_{n,k}(X)).$$
(2)

By assumption, $k \ge n$ which yields that $k - r \ge n - r$. Hence, there is a set $Q \in [P]^{n-r}$. In particular,

$$U \cup Q \in d_{n,k}(X) = g_{n,k}(X) \setminus X = \left\{ y \in [A]^n : \forall z \in [A]^k (y \subseteq z \to \exists x \in X (x \subseteq z)) \right\} \setminus X.$$

Since $U \cup Q \subseteq U \cup P$, by definition of $g_{n,k}(X)$ there exists $x \in X$ such that $x \subseteq U \cup P$. If we let $U' = U \cap x$ and $V' = P \cap x$, then we have found a $V' \subseteq P$ such that $U' \cup V' \in X$. Hence, by definition of X(U'), $P \in X(U') \subseteq \bigcup_{U' \subseteq U} X(U')$.

Since $|S| = p'' = N_{p',k-r,2^r} \ge p'$, there is a set $T \in [S]^{p'}$ and a set $U' \subseteq U$ such that

$$[T]^{k-r} \subseteq X(U').$$

Note that $[T]^{k-r} \neq \emptyset$ since $p' \geq k \geq r$ implies that $p' \geq k - r$. Moreover, by definition of X(U') we have $[T]^{k-r} \subseteq [S]^{k-r}$. Next, let $s = |U'|, Z := \{V'' \in [T]^{n-s} : U' \cup V'' \in X\}$ and $Z' := [T]^{n-s} \setminus Z$. Further, because $|T| = p' \geq N_{p,n-s,2} \geq p$, there is a set $W \in [T]^p$ such that either

$$[W]^{n-s} \subseteq Z$$
 or $[W]^{n-s} \subseteq Z'$.

Additionally, we note that each element w of $[W]^{k-r}$ is an element of $[T]^{k-r}$ and therefore also an element of X(U'). Thus, by definition of X(U') there is a $V' \subseteq w$ such that

$$U' \cup V' \in X.$$

Since each element of X has cardinality n and |U'| = s, there exists a subset V'' of V' with |V''| = n - sand $U' \cap V'' = \emptyset$ such that

$$U' \cup V'' \in X.$$

Note that $V'' \subseteq w \in [W]^{k-r}$ implies that $V'' \in [W]^{n-s}$. Moreover, since $[W]^{n-s} \subseteq [T]^{n-s}$ we also have that $V'' \in [T]^{n-s}$ and therefore, $V'' \in Z$. In particular, $Z \cap [W]^{n-s} \neq \emptyset$ and thus, $[W]^{n-s} \subseteq Z$. Finally, the statement

$$\psi(U', X, W) \equiv W \subseteq A \setminus U' \land \forall V \in [W]^{n - |U'|} (U' \cup V \in X).$$
(3)

holds, where |W| = p.

Claim: $U' \neq U$

Proof by contradiction: First, we note that the following statement holds

$$\psi(U, d_{n,k}(X), S) \equiv S \subseteq A \setminus U \land \forall V \in [S]^{n-|U|} (U \cup V \in d_{n,k}(X)).$$
(4)

Since $W \subseteq S$, W is also a subset of $A \setminus U$. Additionally, since the second half of the statement (4) holds for any $V \in [S]^{n-|U|}$, V can also be an element of $[W]^{n-|U|}$ and the statement is still true. Thus,

$$\psi(U, d_{n,k}(X), W) \equiv W \subseteq A \setminus U \land \forall V \in [W]^{n-|U|} (U \cup V \in d_{n,k}(X)).$$
(5)

holds as well. Now we assume that U' = U. Then by (3) we also have

$$\psi(U, X, W) \equiv W \subseteq A \setminus U \land \forall V \in [W]^{n - |U|} (U \cup V \in X).$$
(6)

By comparing (5) and (6), we note that we can summarize these two statements as follows

$$\psi(U, d_{n,k}(X) \cap X, W) \equiv W \subseteq A \setminus U \land \forall V \in [W]^{n-|U|} (U \cup V \in d_{n,k}(X) \cap X).$$

But by definition, $d_{n,k}$ is given by $g_{n,k}(X) \setminus X$ which yields that $d_{n,k}(X) \cap X = \emptyset$. Hence, both U and V are equal to the empty set. Therefore, the set $[W]^{n-r}$ is empty which is only the case when |W| < n-r. But this is a contradiction because $|W| = p \ge k \ge n \ge r > 0$ which means in particular, that $|W| \ge n-r$. Thus, $U' \ne U$.

Claim 2: If $d_{n,k}^l(X) \neq \emptyset$ for some set $X \subset [A]^n$, then $l \leq n$.

Proof 2: Let $U \in d_{n,k}^{l}(X) \subset [A]^{n}$. This implies that we have $\psi(U, d_{n,k}^{l}(X), W)$ for every $W \in A \setminus U$ and consequently $\varphi(U, d_{n,k}^{l}(X))$, as we have already seen right before Example (0.0.10). Note that $d_{n,k}^{l}(X) := (d_{n,k} \circ d_{n,k}^{l-1})(X)$. Hence, we can apply Claim 1 to $\varphi(U, (d_{n,k}(d_{n,k}^{l-1}(X))))$ and obtain that there is a set U' with |U'| < |U| such that we have $\varphi(U, d_{n,k}^{l-1}(X))$. By iterating this process l-1 times, we get a sequence $U = U_l, U' = U_{l-1}, \cdots, U_0$ with $|U_j| < |U_{j+1}|$. Thus, $|U_j| \ge j$ for all $j \in \{0, \cdots, l\}$. In particular, $|U| = |U_l| \ge l$. Since |U| = n, we obtain that $l \le n$.

As a consequence of 4. and Claim 2 we get $d_{n,k}^n(X) = (g_{n,k} \circ d_{n,k}^n)(X) \setminus d_{n,k}^{n+1}(X) = (g_{n,k} \circ d_{n,k}^n)(X)$, which is 5.

Finally, we are going to show that $I_{n,k'} \subseteq I_{n,k}$ whenever $k' \geq k$. Therefore let $k' \geq k, X \in I_{n,k'}$ by 1. we get $X \subseteq g_{n,k}(X)$ and by 3. we get $g_{n,k}(X) \subseteq g_{n,k'}(X) = X$ and thus $X \subseteq I_{n,k}$ and we get $I_{n,k'} \subseteq I_{n,k}$ whenever $k' \geq k$.

Now, we can define a further function $f_{n,k}: \mathcal{P}\left([A]^n\right) \to \mathcal{P}\left([A]^k\right)$ by:

$$f_{n,k}(X) = \left\{ z \in [A]^k : \exists x \in X (x \subseteq z) \right\}.$$

Consider now $\bar{f}_{n,k} := f_{n,k}|_{I_{n,k}}$.

Claim: $\bar{f}_{n,k}$ is injective.

Proof: Let $X, X' \in I_{n,k}$, so we have $X = g_{n,k}(X), X' = g_{n,k}(X')$, such that $\overline{f}_{n,k}(X) = \overline{f}_{n,k}(X')$. Now let $x \in X$, for any $z \in [A]^k$ such that $x \subseteq z$ we have $z \in \overline{f}_{n,k}(X) = \overline{f}_{n,k}(X')$ which means $\exists x' \in X$ such that $x' \subseteq z$ and thus $x \in g_{n,k}(X') = X'$ and we have $X \subseteq X'$. Analogously, we obtain $X' \subseteq X$ and can conclude that X = X'.

So for the sets in $I_{n,k}$ we can define the inverse of $\overline{f}_{n,k}$ via:

 $\bar{f}_{n,k}^{-1}(\bar{f}_{n,k}(X)) = X.$

Now we have all the tools needed to construct an injective function F from $\mathcal{P}(\operatorname{fin}(A))^{\omega}$ into $\mathcal{P}(\operatorname{fin}(A))$. Let $X \in \mathcal{P}(\operatorname{fin}(A))^{\omega}$, i.e. $X = \{X_s : s \in \omega\}$ where for any $s \in \omega : X_s \in \mathcal{P}(\operatorname{fin}(A))$ (note X is uniquely determined by the X_s). We then define F as follows:

$$F(X) := \bigcup_{s \in \omega} \bigcup_{n \in \omega} \left(\bigcup_{0 \le j \le n} f_{n,k(s,n,j)} \circ g_{n,k(s,n,n)} \circ d^j_{n,k(s,n,n)} \left(X_s \cap [A]^n \right) \right),$$

where we have $k(s, n, j) = 2^s \cdot 3^n \cdot 5^j$. By definition, F is a function from $\mathcal{P}(\operatorname{fin}(A))^{\omega}$ to $\mathcal{P}(\operatorname{fin}(A))$ so we will show that F is injective by showing that a given F(X) has a unique element in it's preimage, working backwards from F(X). To help with legibility we will introduce some new notation:

$$X_{s,n} = X_s \cap [A]^n$$

$$X_{s,n,j} = g_{n,k(s,n,n)} \circ d^j_{n,k(s,n,n)}(X_{s,n})$$

$$Y_{s,n,j} = f_{n,k(s,n,j)}(X_{s,n,j})$$

This gives us the simplified expression:

$$F(X) = \bigcup_{s \in \omega} \bigcup_{n \in \omega} \left(\bigcup_{0 \le j \le n} Y_{s,n,j} \right).$$

As $Y_{s,n,j}$ is in the image of $f_{n,k(s,n,j)}$, we have $Y_{s,n,j} \subseteq F(X) \cap [A]^{k(s,n,j)}$. Combined with the fact that $(s,n,j) \mapsto k(s,n,j)$ is an injective map, we get

$$Y_{s,n,j} = F(X) \cap [A]^{k(s,n,j)}$$

and is thus uniquely determined by F(X). We observe now that by 2. we have $g_{n,k(s,n,n)}(X_{s,n,j}) = X_{s,n,j}$. Thus, $X_{s,n,j} \in I_{n,k(s,n,n)}$. Additionally, as $j \leq n$ we have $k(s,n,j) \leq k(s,n,n)$. So 6. then implies that $X_{s,n,j} \in I_{n,k(s,n,n)} \subseteq I_{n,k(s,n,j)}$ and is then in the domain of \overline{f}^{-1} . It follows that

$$X_{s,n,j} = \bar{f}_{n,k(s,n,j)}^{-1}(Y_{s,n,j}).$$

Now as $d^0_{n,k(s,n,n)}$ is the identity and using 4. we get

$$\begin{aligned} X_{s,n} &= d_{n,k(s,n,n)}^{0}(X_{s,n}) \\ &= (g_{n,k(s,n,n)} \circ d_{n,k(s,n,n)}^{0}(X_{s,n})) \setminus d_{n,k(s,n,n)}^{1}(X_{s,n}) \\ &= X_{s,n,0} \setminus d_{n,k(s,n,n)}^{1}(X_{s,n}) \\ &= X_{s,n,0} \setminus ((g_{n,k(s,n,n)} \circ d_{n,k(s,n,n)}^{1}(X_{s,n})) \setminus d_{n,k(s,n,n}^{2}(X_{s,n})) \\ &= X_{s,n,0} \setminus (X_{s,n,1} \setminus d_{n,k(s,n,n-1}^{2} \setminus d_{n,k(s,n,n}^{n}(X_{s,n}))) \\ \vdots \\ &= X_{s,n,0} \setminus (X_{s,n,1} \setminus (\dots (X_{s,n,n-1} \setminus X_{s,n,n}) \dots)) \\ &= X_{s,n,0} \setminus (X_{s,n,1} \setminus (\dots (X_{s,n,n-1} \setminus X_{s,n,n}) \dots)), \end{aligned}$$

where in the last step we used 5. Thus, the $X_{s,n}$ are also uniquely determined. And since $X_s \in \mathcal{P}(fin(A))$, we have

$$X_s = \bigcup_{n \in \omega} X_{s,n}.$$

Thus it, and consequently X, are uniquely determined and we find F to be injective. This shows us that

$$|\mathcal{P}(\operatorname{fin}(A))^{\omega}| = \left(2^{\operatorname{fin}(\mathfrak{m})}\right)^{\aleph_0} \le |\mathcal{P}(\operatorname{fin}(A))| = 2^{\operatorname{fin}(\mathfrak{m})}.$$

Hence, we have proven that $2^{\operatorname{fin}(\mathfrak{m})} \leq (2^{\operatorname{fin}(\mathfrak{m})})^{\aleph_0}$ and $2^{\operatorname{fin}(\mathfrak{m})} \geq (2^{\operatorname{fin}(\mathfrak{m})})^{\aleph_0}$. Finally, we have the desired result by the Cantor-Bernstein Theorem 0.0.1, namely

$$2^{\operatorname{fin}(\mathfrak{m})} = (2^{\operatorname{fin}(\mathfrak{m})})^{\aleph_0}.$$

Theorem 0.0.11. If \mathfrak{m} is an infinite cardinal, then

$$2^{\aleph_0} \cdot 2^{2^{\mathfrak{m}}} = 2^{2^{\mathfrak{m}}}.$$

In particular, we get

$$2^{2^{\mathfrak{m}}} + 2^{2^{\mathfrak{m}}} = 2^{2^{\mathfrak{m}}}$$

Proof. In order to prove equality we have to show that $2^{2^m} \leq 2^{\aleph_0} \cdot 2^{2^m}$ and $2^{2^m} \geq 2^{\aleph_0} \cdot 2^{2^m}$.

Claim: $2^{2^m} \le 2^{\aleph_0} \cdot 2^{2^m}$ Proof: this inequality is clearly true.

Claim: $2^{2^{\mathfrak{m}}} \geq 2^{\aleph_0} \cdot 2^{2^{\mathfrak{m}}}$ Proof: Let A be a set of cardinality \mathfrak{m} , $\inf(A) := \mathcal{P}(A) \setminus \operatorname{fin}(A)$ and $\inf(\mathfrak{m}) := |\inf(A)|$. Then by Fact (0.0.5)

$$2^{\mathfrak{m}} = |\mathcal{P}(A)| = |\operatorname{fin}(A)| + |\mathcal{P}(A)| - |\operatorname{fin}(A)| = |\operatorname{fin}(A)| + |\mathcal{P}(A) \setminus \operatorname{fin}(A)|$$

= fin(\mu) + |\mathcal{P}(A) \\mathcal{fin}(A)| = fin(\mu) + |\operatorname{inf}(A)| = fin(\mu) + \operatorname{inf}(\mu).

Hence,

$$2^{2^{\mathfrak{m}}} = 2^{\operatorname{fin}(\mathfrak{m}) + \operatorname{inf}(\mathfrak{m})} = 2^{\operatorname{fin}(\mathfrak{m})} \cdot 2^{\operatorname{inf}(\mathfrak{m})}$$

Furthermore, Läuchli's Lemma (0.0.7) and Fact (0.0.6) yield

$$2^{2^{\mathfrak{m}}} = 2^{\operatorname{fin}(\mathfrak{m})} \cdot 2^{\operatorname{inf}(\mathfrak{m})} = \left(2^{\operatorname{fin}(\mathfrak{m})}\right)^{2} \cdot 2^{\operatorname{inf}(\mathfrak{m})} = 2^{\operatorname{fin}(\mathfrak{m})} \cdot \left(2^{\operatorname{fin}(\mathfrak{m})} \cdot 2^{\operatorname{inf}(\mathfrak{m})}\right) = 2^{\operatorname{fin}(\mathfrak{m})} \cdot 2^{2^{\mathfrak{m}}} \ge 2^{\aleph_{0}} \cdot 2^{2^{\mathfrak{m}}}.$$

Thus, by the Cantor-Bernstein Theorem (0.0.1)

$$2^{\aleph_0} \cdot 2^{2^{\mathfrak{m}}} = 2^{2^{\mathfrak{m}}}$$

Bibliography

[1] Halbeisen, Lorenz J.. Combinatorial set theory : with a gentle introduction to forcing - 2nd ed. 2017 - Cham : Springer International Publishing, 2017. (Springer monographs in mathematics).