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Introduction

In B5 multiple choice principles have been presented. In the process, we were able to prove that
the Ramseyan Partition principle (RPP) implies the Chain anti-Chain Principle (CaCP).
In the last two seminars we have been introduced to set theory with atoms (ZFA) and have encoun-
tered several models of it, the so-called permutation models.
The main goal of this seminar is to show that the reverse implication of (RPP) =⇒ (CaCP) is not
provable in ZFA, i.e. we want to prove the following proposition:

Proposition 8.26. In ZFA, CaCP does not imply RPP.

Before outlining the proof, we recall the choice principles in question and the necessary notations
and definitions.

Let X be an arbitrary set and let (P,≤) be a partially ordered set.

By [X]2 we denote the set of all 2-element subsets of X.

Chain: Non-empty subset C ⊆ P that is linearly ordered.

Anti-chain: Non-empty subset A ⊆ P such that all elements of A are pairwise incomparable.

Choice Principles:

– Ramseyan Partition Principle (RPP):
If X is an infinite set and [X]2 is 2-coloured, then there is an infinite subset Y of X such that
[Y ]2 is monochromatic.

– Chain anti-Chain Principle (CaCP):
Every infinite partially ordered set contains an infinite chain or an infinite anti-chain.

The proof of Proposition 8.26 is carried out with the following steps:

(1) In the first step, we construct a permutation model, for which we will be able to prove that
RPP fails and CaCP holds. This model will be denoted by VT .

(2) The second step consists of proving that RPP does not hold in VT .

(3) In the third and ultimate step, we show that CaCP holds in our permutation model VT .

Combining (2) and (3) then yields the statement of the proposition.
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(1) Construction of the permutation model VT

A permutation model is a model of ZFA constructed using a group of permutations of the atoms.
First, we recall the basic idea for the construction of a permutation model.

We start by defining a set of atoms A. Then suppose that G is a group of permutations of A. A
normal filter F of G is a collection of subgroups of G satisfying

– G ∈ F

– Any subgroup containing an element of F is in F

– The intersection of two elements of F is in F .

– For any π ∈ G and H ∈ F , we have πHπ−1 ∈ F .

– The subgroup fixing any element of A is in F .

An element x of a model M of ZFA is called symmetric if its symmetric group

symG(x) := {π ∈ G : πx = x}

belongs to F . The element x is called hereditarily symmetric if x and all elements of its transi-
tive closure are symmetric. The permutation model V then consists of all hereditarily symmetric
elements and it is a transitive model of ZFA.
Often, we consider the normal filter F of G that is generated by the subgroups

fixG(E) := {π ∈ G : πa = a for all a ∈ E}

for E ∈ I, where I is some normal ideal.

We now construct the permutation model with the purpose of proving Proposition 8.26.

– Set of Atoms A:
Consider an arbitrary infinite set I and for each i ∈ I we set Ai := {ai, bi} such that Ai∩Aj = ∅
for distinct i, j ∈ I. Then we define our set of atoms as

A =
⋃
{Ai : i ∈ I}.

So simply put, our set of atoms is an infinite set of pairwise distinct 2-element sets.

– Group of Permutations G:
We let G be the group of permutations of A which move finitely many atoms, such that for
every π ∈ G and each i ∈ I we have πAi = Aj for some j ∈ I.

– Normal Filter F :
We consider the filter generated by Ifin, where Ifin denotes the set of all finite subsets of A. It
can be easily checked that Ifin is a normal ideal. Indeed, for all subsets E,F ⊂ A we have

1. ∅ ∈ Ifin, since the empty set is finite.

2. E ∈ Ifin ∧ F ∈ Ifin =⇒ F ∈ Ifin , as |F | ≤ |E| <∞
3. E ∈ Ifin ∧ F ∈ Ifin =⇒ E ∪ F ∈ Ifin , since |E ∪ F | ≤ |E|+ |F | <∞
4. π ∈ G ∧ E ∈ Ifin =⇒ πE ∈ Ifin, because all π ∈ G are bijections and hence |E| = |πE|
5. ∀a ∈ A : {a} ∈ Ifin

Hence the filter F derived from Ifin is a normal filter.
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The corresponding permutation model then cosists of all hereditarily symmetric elements w.r.t F
and we denote it by VT . Moreover, we note that, similarly as in the basic Fraenkel model, x is in
VT if and only if x is symmetric and each y ∈ x belongs to VT too.

Remark. The permutation model we consider here is essentially the second Fraenkel model, which
was presented in B7. The difference is, that our set of atoms is an amorphous set (i.e. an infinite set
which is not the disjoint union of two infinite subsets) of pairs instead of a countable set of pairs.

(2) RPP fails in VT

In order to show that RPP does not hold in VT we need the following simple fact.

Fact 8.17. Let E ∈ Ifin. Then each S ⊆ A with support E is either finite or co-finite. Furthermore,
if S is finite, then S ⊆ E and if S is co-finite, then (A \ S) ⊆ E.

Proof. Let S ⊆ A with support E, i.e. E satisfies

{π ∈ G : πa = a for all a ∈ E} =: fixG(E) ⊆ symG(S) := {π ∈ G : πa = a for all a ∈ S}.

Let π ∈ fixG(E) and a ∈ A. We then have that πa ∈ S if and only if a ∈ S. If S contains no
elements of A\E, then it is clear that S ⊆ E. Suppose now that S contains an element a0 of A\E.
By the previous observation we see that πa0 ∈ S and since πa0 6= a0, a permutation in fixG(E) can
send a0 to any other element of A \E. Thus S contains all the elements of A \E, which yields that
A \ S ⊆ E.

With this we are now able to prove:

Lemma 8.18. RPP fails in VT .

Proof. The proof amounts to showing that there exists a 2-colouring of [A]2 such that for no infinite
subset Y ⊆ A belonging to VT , [Y ]2 is monochromatic.
For this, we define the 2-colouring π : [A]2 → 2 by

π{x, y} =

{
0 if {x, y} = Ai for some i ∈ I
1 otherwise

Now suppose that Y is an infinite subset of A, such that [Y ]2 is monochromatic. We distinguish
two cases.
Case 1: Suppose that π{x, y} = 0 for all {x, y} ∈ [Y ]2. This is possible if and only if Y = Ai0 for
some i0 ∈ I, because otherwise we can simply choose two elements x, y belonging to distinct Ai’s
and then π{x, y} = 1. We thus have that |Y | = 2, which then contradicts the fact that we chose Y
to be infinite. E
Case 2: Now assume that π{x, y} = 1 for all {x, y} ∈ [Y ]2. By definition of π we have that
|Y ∩ Ai| ≤ 1 for all i ∈ I. Due to the assumed infiniteness of Y , this yields that |Y ∩ Ai| = 1 for
infinitely many i ∈ I and hence A\Y is infinite too. So Y is neither finite nor co-finite and therefore
does not belong to VT by the previous fact.
The only sets Y ⊆ A belonging to VT , such that [Y ]2 is monochromatic, are finite. Hence, RPP
fails in VT .

(3) CaCP holds in VT

Before showing that CaCP does hold in VT , it is helpful to prove a few properties of VT . For this
we need the notion of a closed set.

3

https://people.math.ethz.ch/~halorenz/4students/AC/B7.pdf


Definition. For a finite set E ∈ fin(A), we say that E is closed if, for all i ∈ I,

Ai ∩ E 6= ∅→ Ai ⊆ E.

We are able to prove that every set in VT has a unique least closed support.

Fact 8.19. If Ex and E′x are two closed finite supports of some x ∈ VT , then Ex ∩ E′x is also a
closed finite support of x. Furthermore, for every x ∈ VT there exists a least closed finite support
of x.

Proof. Let Ex and E′x be two closed finite supports of x ∈ VT and define E := Ex ∩E′x. It is easily
shown that the intersection of two closed sets is closed. If Ai ∩ (Ex ∩ E′x) 6= ∅, for some i ∈ I,
then Ai ∩ Ex 6= ∅ as well as Ai ∩ E′x 6= ∅. Therefore Ai ⊆ Ex and Ai ⊆ E′x which implies that
Ai ⊆ Ex ∩ E′x, and therefore proves the desired closedness of the intersection.
So it remains to show that the intersection is indeed a support of x, i.e. we need to show that
fixG(E) ⊆ symG(x). Observe that fixG(E) is generated by the permutations in fixG(Ex) and fixG(E′x).
A permutation that is composed of elements of fixG(Ex) and fixG(E′x) clearly leaves E fixed. To see
that every in fixG(E) can be written as such a composition, note that, since both Ex and E′x are
assumed to be finite, Ex \E′x as well as E′x \Ex are finite. Our group of permutations G consists of
exactly those permutations of A which move just finitely many elements of A. Hence, we can find a
permutation in fixG(Ex) that moves the elements of E′x\Ex and conversely a permutation in fixG(E′x)
that moves the elements of Ex \E′x. So for every π ∈ fixG(E) we can find ρ1, . . . , ρn ∈ fixG(Ex) and
σ1, . . . , σn ∈ fixG(E′x) such that

π = ρnσn · · · ρ1σ1.

Since fixG(E′x) ∪ fixG(Ex) ⊆ symG(x), we immediately obtain that

πx = ρnσn · · · ρ1σ1x = ρnσn · · · ρ1x = · · · = ρnx = x,

i.e. π ∈ symG(x), as desired.

Lemma 8.20. Let (P,≤) be a partially ordered set in VT with support E ∈ fin(A). Then for each
p ∈ P , the set OE(p) := {πp : π ∈ fixG(E)} is an anti-chain in P .

Proof. We assume by contradiction that for some p ∈ P we can find two elements q0 and q1 in OE(p)
that are comparable. Without loss of generality we can assume that q0 < q1. Now, by definition of
OE(p), we can find π0, π1 ∈ fixG(E) such that π0p = q0 and π1p = q1.
For τ := π−1

1 π0 we obtain that

τp = π−1
1 π0p = π−1

1 q0 < π−1
1 q1 = p.

Since τ ∈ G only moves finitely many elements of A, there exists a k ∈ ω such that τk = ι where ι
denotes the identity permutation. We then get the following chain of inequalities

p = τkp < τk−1p < · · · < τp < p,

i.e. p < p, which is clearly a contradiction. Hence the elements of OE(p) are not comparable and
therefore form an anti-chain in P .
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From now on we excessively use the notion of a well-order, so it seems logical to briefly recall it
here:

Definition. A linear ordering ≤ on a set A is a well-ordering on A if every non-empty subset S ⊆ A
has a ≤-minimal element, i.e., there exists an x0 ∈ S such that for each y ∈ S we have x0 ≤ y.
If there exists a well-ordering on a set A, we say that A is well-orderable.

We obtain the next result as a corollary of Lemma 8.20.

Lemma 8.21. Every partially ordered set (P,≤) in VT can be written as a well-orderable union of
anti-chains.

Proof. Suppose that the partially ordered set (P,≤) has support E ∈ fin(A). We have that

O := {OE(p) : p ∈ P}

is a partition of P and in Lemma 8.20, we have seen that each element of O is an anti-chain in P .
Now recall from B7 that M is a transitive model of ZFA, in which the Axiom of Choice (AC) holds.
Since we constructed the permutation model VT as a subclass of M, every set can be well-ordered
in M, due to the equivalence of AC and the well-ordering theorem. In particular, P is indeed a
well-orderable union of anti-chains.

Fact 8.22. Let x ∈ VT be a set with support E ∈ fin(A). If E is a support for each z ∈ x, then x
can be well-ordered in VT .

Proof. We have constructed VT as a subclass of M, where M is a model of ZFA in which AC holds.
Thus, by the well-ordering theorem, we can well-order the set x in M, i.e. there exists a bijection
f ∈M such that f : α→ x for some ordinal α ∈ Ω.
We claim that fixG(E) ⊆ symG(f). From this, it follows that f ∈ VT and hence x can be well-
ordered in VT .
To prove the claim, consider any π ∈ fixG(E) and some 〈β, z〉 ∈ f . Now β is an ordinal and therefore
belongs to the kernel by definition. Furthermore, since z ∈ x, E is also a support of z and because
π ∈ fixG(E) we have πz = z. This yields that

π(〈β, z〉) = 〈πβ, πz〉 = 〈β, z〉.

We derive that πf = f , as 〈β, z〉 was arbitrary. Now, by arbitrariness of π ∈ fixG(E), we obtain
that fixG(E) ⊆ symG(f). This proves the claim and thereby the assertion.

Remark. Note that the only property of VT we used in the proof of the previous statement, is that
VT is a subclass of M. We deduce that this fact therefore holds for any permutation model.

The next result will be crucial for the proof of the fact that CaCP does hold in VT .

Lemma 8.23. Let x ∈ VT be a set which cannot be well-ordered. Then x has an infinite subset
y ∈ VT which has a partition into sets of cardinality at most two. Moreover, the infinite set y
cannot be partitioned into two infinite subsets. In particular, y cannot be well-ordered.

Remark. Infinite sets that cannot be partitioned into two infinite subsets are called amorphous.
Lemma 8.23 can therefore be reformulated as:
A set x ∈ VT that cannot be well-ordered, has an amorphous subset y.
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We need one final lemma before we can conclude the proof of the main result of this step.

Lemma 8.24. The union of a well-orderable family of well-orderable sets in VT is well-orderable.

Proof. Let γ ∈ Ω be an ordinal and let {wα : α ∈ γ} be a family of well-orderable sets wα. We can
assume without loss of generality that the wα are disjoint for α ∈ γ. We define the set

x :=
⋃
{wα : α ∈ γ}.

By contradiction, we assume that x cannot be well-ordered. Then by Lemma 8.23, there exists
an amorphous subset y ⊆ x. In particular, y cannot be well-ordered. Note that a subset of a
well-ordered set is itself well-ordered. Hence, for each α ∈ γ, the set y ∩ wα is well-orderable as a
subset of the well-orderable set wα. Since it is also subset of y, y ∩ wα must be finite.
On the other hand y is infinite and γ is an ordinal and thus we can partition y into two infinite
subsets, which contradicts the properties of y.

Now, we are able to conclude the whole proof with the next result.

Lemma 8.25. CaCP holds in VT .

Proof. We now assume towards a contradiction that CaCP does not hold in VT . That is, we suppose
that there exists an infinite partially ordered set that contains neither an infinite chain nor an infinite
anti-chain. We denote this set by (P,≤). We have seen in Lemma 8.21 that P can be written as a
well-orderable union of anti-chains. Now, by our assumption, each of these anti-chains have to be
finite and therefore can be well-ordered. So we have that P is the union of a well-orderable family
of well-orderable sets. Lemma 8.24 thus implies that P itself is well-orderable.
Therefore, for any colouring π : [P ]2 → 2, there is always an infinite set Y ⊆ P such that [Y ]2

is monochromatic, i.e. P satisfies RPP. Since RPP implies CaCP, we can find an infinite chain or
an infinite anti-chain in P , which contradicts our assumptions on P and thereby concludes the
proof.

From Lemma 8.18 and 8.25 we deduce that we have constructed a permutation model VT such that
CaCP holds, but RPP does not. This is exactly what we intended to prove.

Proposition 8.26. In ZFA, CaCP does not imply RPP.
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