
Chapter 5
The Axiom of Choice

Two terms occasionally used by musicians are “full” consonance and “pleasing” conso-
nance. An interval is said to be “fuller” than another when it has greater power to satisfy
the ear. Consonances are the more “pleasing” as they depart from simplicity, which does
not delight our senses much.

GIOSEFFO ZARLINO

Le Istitutioni Harmoniche, 1558

Zermelo’s Axiom of Choice and Its Consistency with ZF

In 1904, Zermelo published his first proof that every set can be well-ordered. The
proof is based on the so-called Axiom of Choice, denoted AC, which, in Zermelo’s
words, states that the product of an infinite totality of sets, each containing at least
one element, itself differs from zero (i.e., the empty set). The full theory ZF + AC,
denoted ZFC, is called Set Theory.

In order to state the Axiom of Choice we first define the notion of a choice func-
tion: If F is a family of non-empty sets (i.e., ∅ /∈F ), then a choice function for F
is a function f : F →⋃

F such that for each x ∈F , f (x) ∈ x.
The Axiom of Choice—which completes the axiom system of Set Theory and

which is in our counting the ninth axiom of ZFC—states as follows:

9. The Axiom of Choice

∀F
(
∅ /∈ F →∃f

(
f ∈ F⋃

F ∧ ∀x ∈ F
(
f (x) ∈ x

)))
.

Informally, every family of non-empty sets has a choice function, or equivalently,
every Cartesian product of non-empty sets is non-empty.

Before we give some reformulations of the Axiom of Choice and show some of
its consequences, we should address the question whether AC is consistent relative
to the other axioms of Set Theory (i.e., relative to ZF), which is indeed the case.

L.J. Halbeisen, Combinatorial Set Theory, Springer Monographs in Mathematics,
DOI 10.1007/978-1-4471-2173-2_5, © Springer-Verlag London Limited 2012

101

http://dx.doi.org/10.1007/978-1-4471-2173-2_5


102 5 The Axiom of Choice

Assume that ZF is consistent, then, by PROPOSITION 3.5, ZF has a model, say V.
To obtain the relative consistency of AC with ZF, we have to show that also ZF+AC
has a model. In 1935, Gödel informed von Neumann at the Institute for Advanced
Study in Princeton that he had found such a model. In fact he showed that there
exists a smallest transitive subclass of V which contains all ordinals (i.e., contains
� as a subclass) in which AC as well as ZF holds. This unique submodel of V is
called the constructible universe and is denoted by L, where “L” stands for the
following “law” by which the constructible universe is built. Roughly speaking, the
model L consists of all “mathematically constructible” sets, or in other words, all
sets which are “constructible” or “describable”, but nothing else. To be more precise,
let us give the following definitions:

Let M be a set and ϕ(x0, . . . , xn) be a first-order formula in the language {∈}.
Then ϕM denotes the formula we obtain by replacing all occurrences of “∃x” and
“∀x” by “∃x ∈M” and “∀x ∈M”, respectively. A subset y ⊆M is definable over
M if there is a first-order formula ϕ(x0, . . . , xn) in the language {∈}, and parameters
a1, . . . , an in M , such that {z : ϕM(z, a1, . . . , an)} = y. Finally, for any set M :

def(M)= {y ⊆M : y is definable over M}.
Notice that for any set M , def(M) is a set being itself a subset of P(M). Now, by in-
duction on α ∈�, define the following sets (compare with the cumulative hierarchy
defined in Chapter 3):

L0 = ∅,
Lα =

⋃
β∈α

Lβ if α is a limit ordinal,

Lα+1 = def(Lα)

and let

L =
⋃
α∈�

Lα.

Like for the cumulative hierarchy one can show that for each α ∈�, Lα is a transi-
tive set, α ⊆ Lα and α ∈ Lα+1, and that α ∈ β implies Lα � Lβ .

Moreover, Gödel showed that L � ZF + AC, and that L is the smallest transitive
class containing � as a subclass such that L � ZFC. Thus, by starting with any
model V of ZF we find a subclass L of V such that L � ZFC. In other words we find
that if ZF is consistent then so is ZFC (roughly speaking, if ZFC is inconsistent, then
AC cannot be blamed for it).

Equivalent Forms of the Axiom of Choice

There are dozens of hypotheses which are equivalent to the Axiom of Choice, but
among the best known and most popular ones are surely the Well-Ordering Princi-
ple, the Kuratowski–Zorn Lemma, Kurepa’s Principle, and Teichmüller’s Principle—
sometimes called Tukey’s Lemma. Since the first three deal with orderings, we have
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to introduce first the corresponding definitions before we can state these—and some
other—so-called choice principles.

A binary relation “≤” on a set P is a partial ordering of P if it is transitive
(i.e., p ≤ q and q ≤ r implies p ≤ r), reflexive (i.e., p ≤ p for every p ∈ P ), and
anti-symmetric (i.e., p ≤ q and q ≤ p implies p = q). If “≤” is a partial ordering
on P , then (P,≤) is called a partially ordered set.

If (P,≤) is a partially ordered set, then we define

p < q ⇐⇒ p ≤ q ∧ p �= q,

and call (P,<) a partially ordered in the strict sense (replacing reflexivity by p ≮ p

for every p ∈ P ).
Two distinct elements p,q ∈ P , where (P,<) is a partially ordered set, are said

to be comparable if either p < q or q < p; otherwise, they are called incompara-
ble. Notice that for p,q ∈ P we could have p � q as well as p 	 q . However, if
for any elements p and q of a partially ordered set (P,<) we have p < q or p = q

or p > q (where these three cases are mutually exclusive), then P is said to be lin-
early ordered by the linear ordering “<”. Two elements p1 and p2 of P are called
compatible if there exists a q ∈ P such that p1 ≤ q ≥ p2; otherwise they are called
incompatible, denoted p1 ⊥ p2.

We would like to mention that in the context of forcing, elements of partially
ordered sets are called conditions. Furthermore, it is worth mentioning that the defi-
nition of “compatible” given above incorporates a convention, namely the so-called
Jerusalem convention for forcing—with respect to the American convention of forc-
ing, p1 and p2 are compatible if there exists a q such that p1 ≥ q ≤ p2.

Let (P,<) be a partially ordered set. Then p ∈ P is called maximal (or more
precisely <-maximal) in P if there is no x ∈ P such that p < x. Similarly, q ∈ P is
called minimal (or more precisely <-minimal) in P if there is no x ∈ P such that
x < q . Furthermore, for a non-empty subset C ⊆ P , an element p′ ∈ P is said to be
an upper bound of C if for all x ∈ C, x ≤ p′.

A non-empty set C ⊆ P , where (P,<) is a partially ordered set, is a chain in P if
C is linearly ordered by “<” (i.e., for any distinct members p,q ∈ C we have either
p < q or p > q). Conversely, if A⊆ P is such that any two distinct elements of A

are incomparable (i.e., neither p < q nor p > q), then in Order Theory, A is called
an anti-chain. However, in the context of forcing we say that a subset A⊆ P is an
anti-chain in P if any two distinct elements of A are incompatible. Furthermore,
A⊆ P is a maximal anti-chain in P if A is an anti-chain in P and A is maximal
with this property. Notice that if A ⊆ P is a maximal anti-chain, then for every
p ∈ P \A there is a q ∈A such p and q are compatible.

Recall that a binary relation R on a set P is a well-ordering on P , if there is an
ordinal α ∈ � and a bijection f : P → α such that R(x, y) iff f (x) ∈ f (y). This
leads to the following equivalent definition of a well-ordering, where the equiva-
lence follows from the proof of THEOREM 5.1 (the details are left to the reader):
Let (P,<) be a linearly ordered set. Then “<” is a well-ordering on P if every
non-empty subset of P has a <-minimal element. Furthermore, a set P is said to
be well-orderable (or equivalently, P can be well-ordered) if there exists a well-
ordering on P .
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In general, it is not possible to define a well-ordering by a first-order formula on
a given set (e.g., on R). However, the existence of well-ordering is guaranteed by
the following principle:

Well-Ordering Principle. Every set can be well-ordered.

To some extent, the Well-Ordering Principle—like the Axiom of Choice—
postulates the existence of certain sets whose existence in general (i.e., without
any further assumptions like V = L), cannot be proved within ZF.

In particular, the Well-Ordering Principle postulates the existence of well-
orderings of Q and of R. Obviously, both sets are linearly ordered by “<”. However,
since for any elements x and y with x < y there exists a z such that x < z < y, the
ordering “<” is far away from being a well-ordering—consider for example the set
of all positive elements. Even though (Q,<) and (R,<) have similar properties (at
least from an order-theoretical point of view), when we try to well-order these sets
they behave very differently. Firstly, by FACT 4.1 we know that Q is countable and
the bijection f :Q→ ω allows us to define a well-ordering “≺” on Q by stipulating
q ≺ p ⇐⇒ f (q) < f (p). Now, let us consider the set R. For example we could
first well-order the rational numbers, or even the algebraic numbers, and then try
to extend this well-ordering to all real numbers. However, this attempt—as well as
all other attempts—to construct explicitly a well-ordering of the reals will end in
failure (the reader is invited to verify this claim by writing down explicitly some
orderings of R).

As mentioned above, Zermelo proved in 1904 that the Axiom of Choice implies
the Well-Ordering Principle. In the proof of this result presented here we shall use
the ideas of Zermelo’s original proof.

THEOREM 5.1. The Well-Ordering Principle is equivalent to the Axiom of Choice.

Proof. (⇐) Let M be a set. If M = ∅, then M is already well-ordered. So, assume
that M �= ∅ and let P∗(M) := P(M) \ {∅}. Further, let f : P∗(M) → M be an
arbitrary but fixed choice function for P∗(M) (which exists by AC).

A one-to-one function wα : α ↪→M , where α ∈�, is an f -set if for all γ ∈ α:

wα(γ )= f
(
M \ {wα(δ) : δ ∈ γ

})
.

For example w1(0) = f (M) is an f -set, in fact, w1 is the unique f -set with do-
main {0}. Further, by HARTOGS’ THEOREM 3.27, the collection of all f -sets is a
set, say S. Define the ordering “≺” on S as follows: For two distinct f -sets wα and
wβ let wα ≺wβ if α �= β and wβ |α =wα . Notice that wα ≺wβ implies α ∈ β .

CLAIM. The set S of all f -sets is well-ordered by “≺”.

Proof of Claim. Let wα and wβ be any two f -sets and let

Γ = {
γ ∈ (α ∩ β) :wα(γ ) �=wβ(γ )

}
.
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If Γ �= ∅, then, for γ0 =⋂
Γ , we have wα(γ0) �=wβ(γ0). On the other hand, for all

δ ∈ γ0 we have wα(δ)= wβ(δ), thus, by the definition of f -sets, we get wα(γ0)=
wβ(γ0). Hence, Γ = ∅, and consequently we are in exactly one of the following
three cases:

• wα ≺wβ iff α ∈ β .
• wα =wβ iff α = β .
• wβ ≺wα iff β ∈ α.

Thus, the ordering “≺” on S corresponds to the ordering of the ordinals by “∈”, and
since the latter relation is a well-ordering on �, the ordering “≺” is a well-ordering,
too. �Claim

Now, let w := ⋃
S and let M ′ := {x ∈ M : ∃γ ∈ dom(w)(w(γ ) = x)}. Then

w ∈ S and M ′ =M ; otherwise, w can be extended to the f -set

w ∪ {〈
dom(w),f (M \M ′)

〉}
.

Thus, the one-to-one function w : dom(w)→M is onto, or in other words, M is
well-orderable.

(⇒) Let F be any family of non-empty sets and let “<” be any well-ordering
on

⋃
F . Define f : F →⋃

F by stipulating f (x) being the <-minimal element
of x. �

It turns out that in many cases, the Well-Ordering Principle—mostly in combi-
nation with transfinite induction—is easier to apply than the Axiom of Choice. For
example in order to prove that every vector space has an algebraic basis, we would
first well-order the set of vectors and then build a basis by transfinite induction
(i.e., for every vector vα we check whether it is in the linear span of the vectors
{vβ : β ∈ α}, and if it is not, we mark it as a vector of the basis). However, similarly
to the well-ordering of R, in many cases it is not possible to write down explicitly
an algebraic basis of a vector space. For example consider the real vector space of
all countably infinite sequences of real numbers, or any infinite dimensional Banach
space.

The following three principles, which will be shown to be equivalent to the Axiom
of Choice, are quite popular in Algebra and Topology. Even though these principles
look rather different, all state that certain sets have maximal elements or subsets
(with respect to some partial ordering), and so they are usually called maximality
principles. Let us first state the Kuratowski–Zorn Lemma and Kurepa’s Principle.

Kuratowski–Zorn Lemma. If (P,≤) is a non-empty partially ordered set such that
every chain in P has an upper bound, then P has a maximal element.

Kurepa’s Principle. Each partially ordered set has a maximal subset of pairwise in-
comparable elements.
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In order to state Teichmüller’s Principle we have to introduce one more notion:
A family F of sets is said to have finite character if for each set x, x ∈ F iff
fin(x)⊆ F (i.e., every finite subset of x belongs to F ).

Teichmüller’s Principle. Let F be a non-empty family of sets. If F has finite char-
acter, then F has a maximal element (maximal with respect to inclusion “⊆”).

Below we shall see that the three maximality principles are all equivalent to the
Axiom of Choice. However, in order to prove directly that the Axiom of Choice im-
plies the Kuratowski–Zorn Lemma (i.e., without using the Well-Ordering Principle),
we have to show first the following interesting lemma—whose proof does not rely
on any choice principles.

LEMMA 5.2. Let (P,≤) be a non-empty partially ordered set. If there is a func-
tion b : P(P ) → P which assigns to every chain C an upper bound b(C), and if
f : P → P is a function such that for all x ∈ P we have x ≤ f (x), then there is a
p0 ∈ P such that p0 = f (p0).

Proof. Notice that because every well-ordered set is a chain, it is enough to require
the existence of an upper bound b(W) just for every set W ⊆ P which is well-
ordered by “<”. If W ⊆ P is a well-ordered subset of P and x ∈ W , then Wx :=
{y ∈ W : y < x}. A well-ordered set W ⊆ P is called an f -chain, if for all x ∈ W

we have x = f (b(Wx)). Notice that since ∅ ⊆ P is well-ordered by “<”, the set
{f (b(∅))} is an f -chain.

We leave it as an exercise to the reader to verify that the set of f -chains is well-
ordered by proper inclusion “
”. Hence, the set

U =
⋃{

W ⊆ P :W is an f -chain
}

is itself an f -chain. Consider p0 := f (b(U)) and notice that U ∪{p0} is an f -chain.
By the definition of U we find that p0 ∈U , and consequently we have f (b(Up0))=
p0. Now, since f (b(Up0)) ≥ b(Up0) ≥ p0, we must have b(Up0) = p0, and there-
fore f (p0)= p0. �

Now we are ready to prove that the Kuratowski–Zorn Lemma and Teichmüller’s
Principle are both equivalent to the Axiom of Choice.

THEOREM 5.3. The following statements are equivalent:

(a) Axiom of Choice.
(b) Kuratowski–Zorn Lemma.
(c) Teichmüller’s Principle.

Proof. (a) ⇒ (b) Let (P,≤) be a non-empty partially ordered set such that every
chain in P , (in particular every well-ordered chain), has an upper bound. Then, for
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every non-empty well-ordered subset W ⊆ P , the set of upper bounds BW := {p ∈
P : ∀x ∈W(x ≤ p)} is non-empty. Thus, the family

F = {BW :W is a well-ordered, non-empty subset of P }
is a family of non-empty sets and therefore, by the Axiom of Choice, for each W ∈ F
we can pick an element b(W) ∈ BW . Now, for every x ∈ P let

Mx =
{ {x} if x is maximal in P ,

{y ∈ P : y > x} otherwise.

Then {Mx : x ∈ P } is a family of non-empty sets and again by the Axiom of Choice,
there is a function f : P → P such that

f (x)=
{
x if x is maximal in P ,

y where y > x.

Since f (x) ≥ x (for all x ∈ P ) and every non-empty well-ordered subset W ⊆ P

has an upper bound b(W), we can apply LEMMA 5.2 and get an element p0 ∈ P

such that f (p0)= p0, hence, P has a maximal element.
(b) ⇒ (c) Let F be a non-empty family of sets and assume that F has finite

character. Obviously, F is partially ordered by inclusion “⊆”. For every chain C in
F let UC =⋃

C . Then every finite subset of UC belongs to F , thus, UC belongs
to F . On the other hand, UC is obviously an upper bound of C . Hence, every
chain has an upper bound and we may apply the Kuratowski–Zorn Lemma and get a
maximal element of the family F .

(c) ⇒ (a) Given a family F of non-empty sets. We have to find a choice function
for F . Consider the family

E = {f : f is a choice function for some subfamily F ′ ⊆ F }.
Notice that f is a choice function if and only if every finite subfunction of f is a
choice function. Hence, E has finite character. Thus, by Teichmüller’s Principle, the
family E has a maximal element, say f0. Since f0 is maximal, dom(f0)= F , and
therefore f0 is a choice function for F . �

In order to prove that also Kurepa’s Principle is equivalent to the Axiom of Choice,
we have to change the setting a little bit: In the proof of THEOREM 5.3, as well as
in Zermelo’s proof of THEOREM 5.1, the Axiom of Foundation was not involved (in
fact, the proofs can be carried out in Cantor’s Set Theory). However, without the
aid of the Axiom of Foundation it is not possible to prove that Kurepa’s Principle
implies the Axiom of Choice, whereas the converse implication is evident (compare
the following theorem with Chapter 7 | RELATED RESULT 46).

THEOREM 5.4. The following statements are equivalent in ZF:

(a) Axiom of Choice.
(b) Every vector space has an algebraic basis.
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(c) Multiple Choice: For every family F of non-empty sets, there exists a function
f : F → P(

⋃
F ) such that for each X ∈ F , f (X) is a non-empty finite sub-

set of X.
(d) Kurepa’s Principle.

Proof. (a) ⇒ (b) Let V be a vector space and let F be the family of all sets of
linearly independent vectors of V . Obviously, F has finite character. So, by Te-
ichmüller’s Principle, which is, as we have seen in THEOREM 5.3 equivalent to the
Axiom of Choice, F has a maximal element. In other words, there is a maximal set
of linearly independent vectors, which must be of course a basis of V .

(b) ⇒ (c) Let F = {Xι : ι ∈ I } be a family of non-empty sets. We have to con-
struct a function f : F → P(

⋃
F ) such that for each Xι ∈ F , f (Xι) is a non-

empty finite subset of Xι. Without loss of generality we may assume that the mem-
bers of F are pairwise disjoint (if necessary, consider the family {Xι × {Xι} : ι ∈ I }
instead of F ). Adjoin all the elements of X := ⋃

F as indeterminates to some
arbitrary but fixed field F (e.g., F = Q) and consider the field F(X) consisting of
all rational functions of the “variables” in X with coefficients in F. For each ι ∈ I ,
we define the ι-degree of a monomial—i.e., a term of the form ax

k1
1 · · ·xkl

l where
a ∈ F and x1, . . . , xl ∈ X—to be the sum of the exponents of members of Xι in
that monomial. A rational function q ∈ F(X) is called ι-homogeneous of degree d

if it is the quotient of two polynomials such that all monomials in the denominator
have the same ι-degree n, while all those in the numerator have ι-degree n+ d . The
rational functions that are ι-homogeneous of degree 0 for all ι ∈ I form a subfield
F0 of F(X). Thus, F(X) is a vector space over F0, and we let V be the subspace
spanned by the set X.

By assumption, the F0-vector space V has an algebraic basis, say B . Below
we use this basis B to explicitly define the desired function f : F → P(

⋃
F ).

For each ι ∈ I and each x ∈ Xι we can express x as a finite linear combination of
elements of B . Thus, every x ∈Xι can be written in the form

x =
∑

b∈B(x)

ax
b · b,

where B(x) ∈ fin(B) and for all b ∈ B(x), ax
b ∈ F0 \ {0}. If y is another element of

the same Xι as x, then we have on the one hand

y =
∑

b′∈B(y)

a
y

b′ · b′,

and on the other hand, after multiplying the above representation of x by the element
y
x
∈F0, we get

y =
∑

b∈B(x)

( y
x
· ax

b

) · b.
Comparing these two expressions for y and using the fact that B is a basis, i.e., that
the representation of y is unique, we must have

B(x)= B(y) and a
y
b = y

x
· ax

b for all b ∈ B(x).
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Hence, the finite subset B(x) of B as well as the elements
ax
b

x
of F(X) depend only

on ι, not on the particular x ∈Xι, and we therefore call them Bι and aι
b , respectively.

Notice that, since ax
b ∈F0, aι

b is ι-homogeneous of degree −1 (and ι′-homogeneous
of degree 0 for ι′ �= ι). So, when aι

b is written as a quotient of polynomials in reduced
form, some variables from Xι must occur in the denominator. Define f (Xι) to be
the set of all those members of Xι that occur in the denominator of aι

b (in reduced
form) for some b ∈ Bι. Then f (Xι) is a non-empty finite subset of Xι, as required.

(c) ⇒ (d) Let (P,<) be a partially ordered set. By Multiple Choice, there is a
function f such that for each non-empty set X ⊆ P , f (X) is a non-empty finite
subset of X. Let g :P(P )→ fin(P ) be such that g(∅) := ∅ and for each non-empty
X ⊆ P , g(X) := {y ∈ f (X) : y is <-minimal in f (X)}. Obviously, for every non-
empty X ⊆ P , g(X) is a non-empty finite set of pairwise incomparable elements.
Using the function g we construct by transfinite induction a maximal subset of pair-
wise incomparable elements: Let A0 := g(P ), and for α ∈ � let Aα := g(Xα),
where

Xα := {
x ∈ P : x is incomparable with each a ∈⋃{Aβ : β ∈ α}}.

By construction, the Aα’s are pairwise disjoint and any union of Aα’s is a set of pair-
wise incomparable elements. Again by construction there must be an α0 ∈ � such
that Xα0 = ∅. Thus,

⋃{Aβ : β ∈ α0} ⊆ P is a maximal set of pairwise incomparable
elements.

(d) ⇒ (a) By the Axiom of Foundation, for every set x there exists an ordinal
α ∈� such that x ⊆ Vα . Thus, since the Axiom of Choice is equivalent to the Well-
Ordering Principle (see THEOREM 5.1), it is enough to show that Kurepa’s Principle
implies that for every α ∈�, Vα can be well-ordered. The crucial point in that proof
is to show that power sets of well-orderable sets are well-orderable.

The first step is quite straightforward: Let Q be a well-orderable set and let “<Q”
be a well-ordering on Q. We define a linear ordering “≺” on P(Q) by stipulating
x ≺ y iff the <Q-minimal element of the symmetric difference x�y belongs to x.
To see that “≺” is a linear ordering, notice that “≺” is just the lexicographic ordering
on P(Q) induced by “<Q”. The following claim is where Kurepa’s Principle comes
in.

CLAIM. Kurepa’s Principle implies that linearly orderable sets are well-orderable.

Proof of Claim. Let (P,≺) be a linearly ordered set. Consider the set W of all
pairs (X,x) where X ⊆ P and x ∈ X. On W we define a partial ordering “<” by
stipulating

(X,x) < (Y,y) ⇐⇒ X = Y ∧ x ≺ y.

By Kurepa’s Principle, (W,<) has a maximal set of pairwise incomparable elements,
say A ⊆W . For every non-empty set X ⊆ P let f (X) be the unique element of X

such that (X,f (X)) ∈ A . It is not hard to verify that f is a choice function for
P(P ) \ {∅}, and consequently, P can be well-ordered. �Claim
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Now we are ready to show that Kurepa’s Principle implies that every set Vα (α ∈
�) can be well-ordered. We consider the following two cases:

α successor ordinal: Let α = β0 + 1 and assume that Vβ0 is well-orderable. Then
Vα = P(Vβ0), and as the power set of a well-orderable set, Vα is well-orderable.

α limit ordinal: Assume that for each β ∈ α, Vβ is well-orderable, i.e., for each β ∈
α there exists a well-ordering “<β” on Vβ . Let ξ be the least ordinal such that there
is no injection from ξ into Vα . The ordinal ξ exists by HARTOGS’ THEOREM 3.27
and since every Vβ can be well-ordered. Since ξ is well-ordered by ∈, P(ξ) can be
well-ordered; let us fix a well-ordering ≺ξ⊆ (P(ξ)× P(ξ)). For every β ∈ α we
choose a well-ordering “<β” on Vβ as follows:

• If β = 0, then <0= ∅.
• If β =⋃

δ∈β δ is a limit ordinal, then, for x, y ∈ Vβ , let

x <β y ⇐⇒ ρ(x) ∈ ρ(y)∨ (
ρ(x)= ρ(y)∧ x <ρ(x) y

)
,

where for any z, ρ(z) :=⋂{γ ∈� : x ∈ Vγ }.
• If β = δ + 1 is a successor ordinal, then, by the choice of ξ , there is an injection

f : Vδ ↪→ ξ . Let x = ran(f ); then x ⊆ ξ . Further, there exists a bijection between
P(Vδ)= Vβ and P(x), and since P(x)⊆ P(ξ) and P(ξ) is well-ordered by
“≺ξ ”, the restriction of “≺ξ ” to P(x) induces a well-ordering on Vβ .

Thus, for every β ∈ α we have a well-ordering “<β” on Vβ . Now, for x, y ∈ Vα

define

x <α y ⇐⇒ ρ(x) ∈ ρ(y)∨ (
ρ(x)= ρ(y)∧ x <ρ(x) y

)
.

Then, by construction, “<α” is a well-ordering on Vα . �

We conclude this section on equivalent forms of AC by giving three cardinal
relations which are equivalent to the Well-Ordering Principle.

THEOREM 5.5. Each of the following statements is equivalent to the Well-Ordering
Principle, and consequently to the Axiom of Choice:

(a) Every cardinal m is an aleph, i.e., contains a well-orderable set.
(b) Trichotomy of Cardinals: If n and m are any cardinals, then n<m or n=m or

n>m, where these three cases are mutually exclusive.
(c) If n and m are any cardinals, then n≤∗ m or m≤∗ n.
(d) If m is any infinite cardinal, then m2 =m.

Proof. (a) If every set is well-orderable, then obviously every cardinal contains an
well-orderable set and is therefore an aleph. On the other hand, for an arbitrary set
x let m = |x| and let y0 ∈ m be well-orderable. By definition of m there exists a
bijection between y0 and x, and therefore, x is well-orderable as well.

(b) Firstly notice that any two alephs are comparable. Thus, by (a) we see that
the Well-Ordering Principle implies the Trichotomy of Cardinals and consequently so
does AC. On the other hand, by HARTOGS’ THEOREM 3.27 we know that for every
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cardinal m there is a smallest aleph, denoted ℵ(m), such that ℵ(m)�m. Now, if any
two cardinals are comparable we must have m< ℵ(m), which implies that m is an
aleph.

(c) Notice that if every set can be well-ordered, then for any cardinals n and
m we have n ≤∗ m iff n ≤ m. For the other direction we first prove that for any
cardinal m there exists an aleph ℵ′(m) such that ℵ′(m) �∗ m: Notice that if there
exists a surjection from a set A onto a set B , then there exist an injection from B into
P(A). So, by definition of ℵ(2m) we have ℵ(2m)�∗ m. Let now m be an arbitrary
cardinal and let n= ℵ(2m). If n≤∗ m or n≥∗ m, then we must have n≥∗ m (since
n�∗ m), which implies that m is an aleph and completes the proof.

(d) Assume that for any infinite cardinal n we have n2 = n. Hence, we get m+
ℵ(m) = (m+ ℵ(m))2 = m2 + (m + m) · ℵ(m)+ ℵ(m)2 = m+ ℵ(m)+ m · ℵ(m),
and since m+ℵ(m)≤m · ℵ(m) we have

m+ℵ(m)=m · ℵ(m).

Now, let x ∈m and let y0 ∈ ℵ(m) be a set which is well-ordered by “<y0 ”. Without
loss of generality we may assume that x and y0 are disjoint. Since |x∪y0| = |x×y0|,
there exists a bijection f : x ∪ y0 → x × y0. Using the bijection f we define
x̃ := {a ∈ x : ∃b ∈ y0 (〈a, b〉 ∈ f [y0])} ⊆ x. Firstly notice that x̃ = x. Indeed, if
there would be an a0 ∈ x \ x̃, then for all b ∈ y0 we have f−1(〈a0, b〉) /∈ y0, i.e.,
f−1(〈a0, b〉) ∈ x. Thus, since f is bijective, f−1[{a0} × y0] ⊆ x is a set of cardi-
nality ℵ(m), contradicting the fact that ℵ(m)�m. So, for every a ∈ x, the set

ua :=
{
b ∈ y0 : ∃b′ ∈ y0

(
f (b)= 〈a, b′〉)}

is a non-empty subset of y0, and—since y0 is well-ordered by “<y0 ”—has a <y0 -
minimal element, say μa . Finally, define an ordering “<” on x by stipulating a < a′
iff μa <y0 μa′ . It is easily checked that “<” is a well-ordering on x, and therefore,
m is an aleph.

The converse implication—namely that the Well-Ordering Principle implies that
m2 =m for every infinite cardinal m—is postponed to the next section (see THEO-
REM 5.7). �

Cardinal Arithmetic in the Presence of AC

In the presence of AC we are able to define cardinal numbers as ordinals: For any
set A we define

|A| =
⋂

{α ∈� : there is a bijection between α and A}.
Recall that AC implies that every set A is well-orderable and that every well-
ordering of A corresponds to exactly one ordinal (which is the order type of the
well-ordering).

For example we have |n| = n for every n ∈ ω, and |ω| = ω. However, for α ∈�

we have in general |α| �= α, e.g., |ω+ 1| = ω.
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Ordinal numbers κ ∈ � such that |κ| = κ are called cardinal numbers, or just
cardinals, and are usually denoted by Greek letters like κ , λ, μ, et cetera.

A cardinal κ is infinite if κ /∈ ω, otherwise, it is finite. In other words, a cardinal
is finite if and only if it is a natural number.

Since cardinal numbers are just a special kind of ordinal, they are well-ordered
by “∈”. However, for cardinal numbers κ and λ we usually write κ < λ instead of
κ ∈ λ, thus,

κ < λ ⇐⇒ κ ∈ λ.

Let κ be a cardinal. The smallest cardinal number which is greater than κ is
denoted by κ+, thus,

κ+ =
⋂{

α ∈� : κ < |α|}.
Notice that by CANTOR’S THEOREM 3.25, for every cardinal κ there is a cardinal

λ > κ , in particular, for every cardinal κ ,
⋂{α ∈ � : κ < |α|} is non-empty and

therefore κ+ exists.
A cardinal μ is called a successor cardinal if there exists a cardinal κ such that

μ = κ+; otherwise, it is called a limit cardinal. In particular, every positive num-
ber n ∈ ω is a successor cardinal and ω is the smallest non-zero limit cardinal. By
induction on α ∈� we define ωα+1 := ω+

α , where ω0 := ω, and ωα :=⋃
δ∈α ωδ for

limit ordinals α; notice that
⋃

δ∈α ωδ is a cardinal. In particular, ωω is the smallest
uncountable limit cardinal and ω1 = ω+

0 is the smallest uncountable cardinal. Fur-
ther, the collection {ωα : α ∈ �} is the class of all infinite cardinals, i.e., for every
infinite cardinal κ there is an α ∈� such that κ = ωα . Notice that the collection of
cardinals is—like the collection of ordinals—a proper class and not a set.

Cardinal addition, multiplication, and exponentiation are defined as follows:

Cardinal addition: For cardinals κ and μ let κ +μ := |(κ × {0}) ∪̇ (μ× {1})|.
Cardinal multiplication: For cardinals κ and μ let κ ·μ := |κ ×μ|.
Cardinal exponentiation: For cardinals κ and μ let κμ := |μκ|.
Since for any set A, |A2| = |P(A)|, the cardinality of the power set of a cardinal
κ is usually denoted by 2κ . However, because 2ω is the cardinality of the so-called
continuum R, it is usually denoted by c. Notice that by CANTOR’S THEOREM 3.25
for all cardinals κ we have κ < 2κ .

As a consequence of the definition we get the following

FACT 5.6. Addition and multiplication of cardinals is associative and commuta-
tive and we have the distributive law for multiplication over addition, and for all
cardinals κ , λ, μ, we have

κλ+μ = κλ · κμ, κμ·λ = (κλ)μ, (κ · λ)μ = κμ · λμ.

Proof. It is obvious that addition and multiplication is associative and commutative
and that we have the distributive law for multiplication over addition. Now, let κ , λ,
μ, be any cardinal numbers. Firstly, for every function f : (λ×{0})∪ (μ×{1})→ κ



Cardinal Arithmetic in the Presence of AC 113

let the functions fλ : (λ× {0}) → κ and fμ : (μ× {1}) → κ be such that for each
x ∈ (λ× {0})∪ (μ× {1}),

f (x)=
{
fλ(x) if x ∈ λ× {0},
fμ(x) if x ∈ μ× {1}.

It is easy to see that each function f : (λ× {0}) ∪ (μ× {1})→ κ corresponds to a
unique pair 〈fλ,fμ〉, and vice versa, each pair 〈fλ,fμ〉 defines uniquely a function
f : (λ×{0})∪ (μ×{1})→ κ . Thus, we have a bijection between κλ+μ and κλ · κμ.

Secondly, for every function f : μ → λκ let f̃ : μ× λ → κ be such that for all
α ∈ μ and all β ∈ λ we have

f̃
(〈α,β〉)= f (α)(β).

We leave it as an exercise to the reader to verify that the mapping

μ
(
λκ
)−→ μ×λκ

f %−→ f̃

is bijective, and therefore we have κμ·λ = (κλ)μ.

Thirdly, for every function f : μ → κ × λ let the functions fκ : μ → κ and
fλ : μ→ λ be such that for each α ∈ μ, f (α)= 〈fκ(α), fλ(α)〉. We leave it again
as an exercise to the reader to show that the mapping

μ(κ × λ)−→ μκ × μλ

f %−→ 〈fκ,fλ〉
is a bijection. �

The next result completes the proof of THEOREM 5.5(d):

THEOREM 5.7. For any ordinal numbers α,β ∈� we have

ωα +ωβ = ωα ·ωβ = ωα∪β = max{ωα,ωβ}.
In particular, for every infinite cardinal κ we have κ2 = κ .

Proof. It is enough to show that for all α ∈� we have ωα ·ωα = ωα . For α = 0 we
already know that |ω×ω| = ω, thus, ω0 ·ω0 = ω0. Assume towards a contradiction
that there exists a β0 ∈� such that ωβ0 ·ωβ0 >ωβ0 . Let

α0 =
⋂

{α ∈ β0 + 1 : ωα ·ωα > ωα}.
On ωα0 ×ωα0 we define an ordering “<” by stipulating

〈γ1, δ1〉< 〈γ2, δ2〉 ⇐⇒
⎧⎨
⎩

γ1 ∪ δ1 ∈ γ2 ∪ δ2, or

γ1 ∪ δ1 = γ2 ∪ δ2 ∧ γ1 ∈ γ2, or

γ1 ∪ δ1 = γ2 ∪ δ2 ∧ γ1 = γ2 ∧ δ1 ∈ δ2.
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This linear ordering can be visualised as follows:

It is easily verified that “<” is a well-ordering on ωα0 ×ωα0 . Now, let ρ be the order
type of the well-ordering “<” and let Γ : ωα0 × ωα0 → ρ be the unique order pre-
serving bijection between ωα0 ×ωα0 and ρ, i.e., 〈γ1, δ1〉< 〈γ2, δ2〉 iff Γ (〈γ1, δ1〉) ∈
Γ (〈γ2, δ2〉). Because ωα0 · ωα0 >ωα0 we have ωα0 < |ρ|. Now, by the definition of
the well-ordering “<”, there are γ0, δ0 ∈ ωα0 such that Γ (〈γ0, δ0〉) = ωα0 and for
ν = γ0 ∪ δ0 we have |ν × ν| ≥ ωα0 . Thus, for ωβ = |ν| we have ωβ < ωα0 (since
ν ∈ ωα0 ) and ωβ ·ωβ ≥ ωα0 . In particular, ωβ ·ωβ > ωβ , which is a contradiction to
the choice of α0. �

As a consequence of THEOREM 5.7 we get the following

COROLLARY 5.8. If κ is an infinite cardinal, then seq(κ)= κ and κκ = 2κ .

Proof. Firstly we have seq(κ) = |⋃n∈ω κn| = 1 + κ + κ2 + . . . = 1 + κ · ω = κ .
Secondly, by definition we have κκ = |κκ|. By identifying each function f ∈ κκ by
its graph, which is a subset of κ×κ , we get |κκ| ≤ |P(κ×κ)|, and since |κ×κ| = κ

we finally have κκ ≤ |P(κ)| = 2κ . �

Let λ be an infinite limit ordinal. A subset C of λ is called cofinal in λ if
⋃

C = λ.
The cofinality of λ, denoted cf(λ), is the cardinality of a smallest cofinal set C ⊆ λ.
In other words,

cf(λ)= min
{|C| : C is cofinal in λ

}
.

Notice that by definition, cf(λ) is always a cardinal number.

Let again λ be an infinite limit ordinal and let C = {βξ : ξ ∈ cf(λ)} ⊆ λ be cofinal
in λ. Now, for every ν ∈ cf(λ) let αν :=⋃{βξ : ξ ∈ ν} (notice that all the αν ’s belong
to λ). Then 〈αν : ν ∈ cf(λ)〉 is an increasing sequence (not necessarily in the strict
sense) of length cf(λ) with

⋃{αν : ν ∈ cf(λ)} = λ. Thus, instead of cofinal subsets
of λ we could equally well work with cofinal sequences.

Since every infinite cardinal is an infinite limit ordinal, cf(κ) is also defined for
cardinals κ . An infinite cardinal κ is called regular if cf(κ) = κ ; otherwise, κ is
called singular. For example ω is regular and ωω is singular (since {ωn : n ∈ ω} is
cofinal in ωω). In general, for non-zero limit ordinals λ we have cf(ωλ)= cf(λ). For
example cf(ωω)= cf(ωω+ω)= cf(ωωωω

)= ω.
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FACT 5.9. For all infinite limit ordinals λ, the cardinal cf(λ) is regular.

Proof. Let κ = cf(λ) and let 〈αξ : ξ ∈ κ〉 be an increasing, cofinal sequence of λ.
Further, let C ⊆ κ be cofinal in κ with |C| = cf(κ). Now, 〈αν : ν ∈ C〉 is still a cofinal
sequence of λ, which implies that cf(λ)≤ cf(κ). On the other hand we have cf(κ)≤
κ = cf(λ). Hence, cf(κ)= κ = cf(λ), which shows that cf(λ) is regular. �

The following result—which implicitly uses AC—shows that all infinite succes-
sor cardinals are regular.

PROPOSITION 5.10. If κ is an infinite cardinal, then κ+ is regular.

Proof. Assume towards a contradiction that there exists a subset C ⊆ κ+ such that
C is cofinal in κ+ and |C| < κ+, i.e., |C| ≤ κ . Since C ⊆ κ+, for every α ∈ C we
have |α| ≤ κ . Now, by AC, for each α ∈ C we can choose a one-to-one mapping
fα : α ↪→ κ and further let g be a one-to-one mapping from C into κ . Then,{〈

g(α), fα(ν)
〉 : α ∈ C ∧ ν ∈ α

}
is a subset of κ × κ and consequently |⋃C| ≤ |κ × κ| = κ . Thus,

⋃
C �= κ+ which

implies that C is not cofinal in κ+. �

For example, ω1, ω17, and ωω+5 are regular, since ω1 = ω+
0 , ω17 = ω+

16, and
ωω+5 = ω+

ω+4.
We now consider arbitrary sums and products of cardinal numbers. For this, let

I be a non-empty set and let {κι : ι ∈ I } be a family of cardinals. We define

∑
ι∈I

κι =
∣∣∣∣
⋃
ι∈I

Aι

∣∣∣∣
where {Aι : ι ∈ I } is a family of pairwise disjoint sets such that |Aι| = κι for each
ι ∈ I , e.g., Aι = κι × {ι} will do.

Similarly we define

∏
ι∈I

κι =
∣∣∣∣
∏
ι∈I

Aι

∣∣∣∣
where {Aι : ι ∈ I } is a family of sets such that |Aι| = κι for each ι ∈ I , e.g., Aι = κι
will do.

THEOREM 5.11 (INEQUALITY OF KÖNIG–JOURDAIN–ZERMELO). Let I be a
non-empty set and let {κι : ι ∈ I } and {λι : ι ∈ I } be families of cardinal numbers
such that κι < λι for every ι ∈ I . Then∑

ι∈I
κι <

∏
ι∈I

λι.
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Proof. Let {Aι : ι ∈ I } be a family of pairwise disjoint sets such that |Aι| = κι for
each ι ∈ I . Firstly, for each ι ∈ I choose a injection fι : Aι ↪→ λι and an element
yι ∈ λι \ fι[Aι] (notice that since |Aι|< λι, the set λι \ fι[Aι] is non-empty).

As a first step we show that
∑

ι∈I κι ≤
∏

ι∈I λι: For this, define f̄ :⋃ι∈I Aι →∏
ι∈I λι by stipulating f̄ (x) := 〈f̄ι(x) : ι ∈ I 〉 where

f̄ι(x)=
{
fι(x) if x ∈Aι,

yι otherwise.

Then f̄ is obviously a one-to-one function from
⋃

ι∈I Aι into
∏

ι∈I λι, which shows
that

∑
ι∈I κι ≤

∏
ι∈I λι.

To see that
∑

ι∈I κι <
∏

ι∈I λι, take any function g : ⋃ι∈I Aι → ∏
ι∈I λι. For

every ι ∈ I , let Pι(g[Aι]) be the projection of g[Aι] on κι. Then, for each ι ∈ I we
can choose an element zι ∈ λι \ Pι(g[Aι]). Evidently, the sequence 〈zι : ι ∈ I 〉 does
not belong to g[⋃ι∈I Aι] which shows that g is not surjective, and consequently, g
is not bijective. �

As an immediate consequence we get the following

COROLLARY 5.12. For every infinite cardinal κ we have

κ < κcf(κ) and cf(2κ ) > κ.

In particular we find that cf(c) > ω.

Proof. Let 〈αν : ν ∈ cf(κ)〉 be a cofinal sequence of κ . On the one hand we have

κ =
∣∣∣∣
⋃

ν∈cf(κ)

αν

∣∣∣∣≤
∑

ν∈cf(κ)

|αν | ≤ cf(κ) · κ = κ,

and hence, κ = ∑
ν∈cf(κ) |αν |. On the other hand, for each ν ∈ cf(κ) we have

|αν |< κ , and therefore, by THEOREM 5.11, we have∑
ν∈cf(κ)

|αν |<
∏

ν∈cf(κ)

κ = κcf(κ).

Thus, we have κ < κcf(κ).
In order to see that cf(2κ ) > κ , notice that cf(2κ) ≤ κ would imply that

(2κ)cf(2κ ) ≤ (2κ )κ = 2κ·κ = 2κ , which contradicts the fact that 2κ < (2κ)cf(2κ ). �

Some Weaker Forms of the Axiom of Choice

The Prime Ideal Theorem and Related Statements

The following maximality principle—which is frequently used in areas like Alge-
bra and Topology—is just slightly weaker than the Axiom of Choice. However, in
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order to formulate this choice principle we have to introduce the notion of Boolean
algebra and ideal:

A Boolean algebra is an algebraic structure, say

(B,+, ·,−,0,1)

where B is a non-empty set, “+” and “ · ” are two binary operations (called Boolean
sum and product), “−” is an unary operation (called complement), and 0, 1 are two
constants. For all u,v,w ∈ B , the Boolean operations satisfy the following axioms:

u+ v = v + u u · v = v · u (commutativity)

u+ (v +w)= (u+ v)+w u · (v ·w)= (u · v) ·w (associativity)

u · (v +w)= (u · v)+ (u ·w) u+ (v ·w)= (u+ v) · (u+w) (distributivity)

u · (u+ v)= u u+ (u · v)= u (absorption)

u+ (−u)= 1 u · (−u)= 0 (complementation)

An algebra of sets is a collection S of subsets of a given set S such that S ∈ S
and whenever X,Y ∈ S , then S \ (X ∩ Y) ∈S (i.e., S is closed under unions, in-
tersections and complements). An algebra of sets S ⊆ P(S) is a Boolean algebra,
with Boolean sum and product being ∪ and ∩, respectively, the complement −X of
a set X ∈ S being S \ X, and with ∅ and S being the constants 0 and 1, respec-
tively. In particular, for any set S, (P(S),∪,∩,−,∅, S) is a Boolean algebra. The
case when S = ω plays an important role throughout this book and some combina-
torial properties of the Boolean algebra (P(ω),∪,∩,−,∅,ω) will be investigated
in Chapters 8–10.

From the axioms above one can derive additional Boolean-algebraic rules that
correspond to rules for the set operations ∪, ∩ and −. Among others we have

u+ u= u · u=−(−u)= u, u+ 0 = u, u · 0 = 0, u+ 1 = 1, u · 1 = u,

as well as the two De Morgan laws

−(u+ v)=−u · −v and −(u · v)=−u+−v.

The De Morgan laws might be better recognised in set-theoretic notation as

S \ (X ∪ Y)= (S \X)∩ (S \ Y)

where X,Y ∈P(S); or in Propositional Logic as

¬(ϕ ∨ψ)≡¬ϕ ∧¬ψ

where ϕ and ψ are any sentences formulated in a certain language.
This last formulation in the language of Propositional Logic shows the relation

between Boolean algebra and Logic and provides other examples of Boolean alge-
bras:

Let L be a first-order language and let S be the set of all L -sentences. We define
an equivalence relation “∼” on S by stipulating

ϕ ∼ψ ⇐⇒ ! ϕ ↔ψ.
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The set B := S/∼ of all equivalence classes [ϕ] is a Boolean algebra under the
operations [ϕ] + [ψ] := [ϕ ∨ ψ], [ϕ] · [ψ] := [ϕ ∧ ψ], −[ϕ] := [¬ϕ], where 0 :=
[ϕ ∧¬ϕ] and 1 := [ϕ ∨¬ϕ]. This algebra is called the Lindenbaum algebra.

Let us define

u− v = u · (−v)

and

u≤ v ⇐⇒ u− v = 0.

We leave it as an exercise to the reader to verify that “≤” is a partial ordering on B

and that

u≤ v ⇐⇒ u+ v = v ⇐⇒ u · v = u.

Notice also that [ϕ] ≤ [ψ] is equivalent to ! ϕ →ψ .
With respect to that ordering, 1 is the greatest element of B and 0 is the least

element. Also, for any u,v ∈ B , u+ v is the least upper bound of {u,v}, and u · v
is the greatest lower bound of {u,v}. Moreover, since −u is the unique element v
of B such that u+ v = 1 and u · v = 0 we see that all Boolean-algebraic operations
can be defined in terms of the partial ordering “≤” (e.g., −u is the least element v
of B with the property that u+ v = 1).

Now, let us define an additional operation “⊕” on B by stipulating

u⊕ v = (u− v)+ (v − u).

Notice that for every u ∈ B we have u⊕ u= 0, thus, with respect to the operation
“⊕”, every element of B is its own (and unique) inverse. We leave it as an exercise
to the reader to show that B with the two binary operations ⊕ and · is a ring with
zero 0 and unit 1.

Before we give the definition of ideals in Boolean algebras, let us briefly recall
the algebraic notion of ideals in commutative rings: Let R = (R,+, ·,0) be an
arbitrary commutative ring. An non-empty subset I ⊆R is an ideal in R if and only
if for all x, y ∈ I and all r ∈ R we have x − y ∈ I and r · x ∈ I . The ideal {0} is
called the trivial ideal. An ideal I ⊆ R of a ring is called maximal if I �= R and the
only ideals J in R for which I ⊆ J are J = I and J =R. If R is a commutative ring
and I �= R is an ideal in R, then I is called a prime ideal if given any r, s ∈ R with
r · s ∈ I we always have r ∈ I or s ∈ I . It is not hard to verify that in a commutative
ring with 1, every maximal ideal is prime. Finally, if an ideal J ⊆R is generated by
a single element of R, then J is so-called principal ideal.

With respect to the ring (B,⊕, ·,0,1), this leads to the following definition of
ideals in Boolean algebras.

Let (B,+, ·,−,0,1) be a Boolean algebra. An ideal I in B is a non-empty
proper subset of B with the following properties:

• 0 ∈ I but 1 /∈ I .
• If u ∈ I and v ∈ I , then u+ v ∈ I .
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• For all w ∈ B and all u ∈ I , w ·u ∈ I (or equivalently, if w ∈ B , u ∈ I and w ≤ u,
then w ∈ I ).

Considering the Boolean algebra (P(ω),∪,∩,−,∅,ω), one easily verifies that the
set of all finite subsets of ω is an ideal over ω, i.e., an ideal on P(ω). This ideal is
called the Fréchet ideal.

The dual notion of an ideal is a so-called filter. Thus, a filter F in B is a non-
empty proper subset of B with the following properties:

• 0 /∈ F but 1 ∈ F .
• If u ∈ F and v ∈ F , then u · v ∈ F .
• For all w ∈ B and all u ∈ F , w + u ∈ I (or equivalently, if w ∈ B , u ∈ F and

w ≥ u, then w ∈ F ).

Moreover, if I is an ideal in B , then I ∗ := {−u : u ∈ I } is a filter, called dual filter.
Similarly, if F is a filter in B , then F ∗ := {−u : u ∈ F } is an ideal, called dual
ideal. The dual filter I ∗0 = {x ⊆ ω : ω \ x is finite} of the Fréchet ideal I0 on P(ω)

is called the Fréchet filter.

Let I be an ideal in B , and let F be a filter in B .

I is called F is called

• trivial if I = {0}; • trivial if F = {1};
• principal if there is an u ∈ B

such that I = {v : v ≤ u};
• principal if there is an u ∈ B

such that F = {v : v ≥ u};
• prime if for all u ∈ B, either

u ∈ I or −u ∈ I ;
• an ultrafilter if for all u ∈ B,

either u ∈ F or −u ∈ F .

Let us consider a few ideals and filters over ω, i.e., ideals and filters in the Boolean
algebra (P(ω),∪,∩,−,∅,ω): The trivial ideal is {∅}, and the trivial filter is {ω}.
For any non-empty subset x ⊆ ω, Fx := {y ∈ P(ω) : y ⊇ x} is a principal filter, and
the dual ideal Iω\x := (Fx)

∗ = {z ∈ P(ω) : ω \ z ∈ Fx} = {z ∈ P(ω) : z ∩ x = ∅}
is also principal. In particular, if x = {a} for some a ∈ ω, then Fx is a principal
ultrafilter and Iω\x is a principal prime ideal. We leave it as an exercise to the reader
to show that every principal ultrafilter over ω is of the form F{a} for some a ∈ ω, and
that every principal prime ideal is of the form Iω\{a}. Considering the Fréchet filter
F on P(ω), one easily verifies that F is a non-principal filter, but not an ultrafilter
(notice that neither x = {2n : n ∈ ω} nor ω \ x belongs to F ). Similarly, the Fréchet
ideal is not prime but non-principal.

Let us now summarise a few basic properties of ultrafilters over sets (the proofs
are left to the reader):

FACT 5.13. Let U be an ultrafilter over a set S.

(a) If {x0, . . . , xn−1} ⊆ P(S) (for some n ∈ ω) such that x0 ∪ . . . ∪ xn−1 ∈ U and
for any distinct i, j ∈ n we have xi ∩ xj /∈ U , then there is a unique k ∈ n such
that xk ∈U .
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(b) If x ∈U and |x| ≥ 2, then there is a proper subset y � x such that y ∈U .
(c) If U contains a finite set, then U is principal.

On the one hand, prime ideals and ultrafilters in Boolean algebras are always
maximal. On the other hand, one cannot prove in ZF that for example the Fréchet
filter over ω can be extended to an ultrafilter. In particular, there are models of ZF
in which every ultrafilter over ω is principal (cf. RELATED RESULT 38 and Chap-
ter 17).

However, there is a choice principle which guarantees that every ideal in a
Boolean algebra can be extended to a prime ideal, and consequently, that every
filter can be extended to an ultrafilter.

Prime Ideal Theorem. If I is an ideal in a Boolean algebra, then I can be extended
to a prime ideal.

In fact, the Prime Ideal Theorem, denoted PIT, is a choice principle which is
just slightly weaker than the full Axiom of Choice. Below we shall present some
equivalent formulations of the Prime Ideal Theorem, but first let us show that the
Prime Ideal Theorem follows from the Axiom of Choice (for the fact that the converse
implication does not hold see THEOREM 7.16).

PROPOSITION 5.14. AC ⇒ PIT.

Proof. By THEOREM 5.3 it is enough to show that the Prime Ideal Theorem follows
from Teichmüller’s Principle. Let (B,+, ·,−,0,1

)
be a Boolean algebra and let I0 �

B be an ideal. Further, let F be the family of all sets X ⊆ B \ I0 such that for every
finite subset {u0, . . . , un} ⊆X ∪ I0 we have

u0 + . . .+ un �= 1.

Obviously, F has finite character, and therefore, by Teichmüller’s Principle, F has
a maximal element. In other words, there is a maximal subset I1 of B which has
the property that whenever we pick finitely many elements {u0, . . . , un} from I :=
I0 ∪ I1 we have u0 + . . .+ un �= 1. Since I1 is maximal we find that I is an ideal
in B which extends I0. Moreover, the ideal I has the property that for any element
v ∈ B \ I there is a u ∈ I such that u + v = 1, i.e., for any v ∈ B , v /∈ I implies
−v ∈ I . Thus, I is a prime ideal in B which extends I0. �

A seemingly weaker version of PIT is the following statement.

Ultrafilter Theorem. If F is a filter over a set S, then F can be extended to an ultra-
filter.

Notice that the Ultrafilter Theorem is the dual version of the Prime Ideal Theorem
in the case when the Boolean algebra is an algebra of sets.

For the next version of the Prime Ideal Theorem we have to introduce first some
terminology: Let S be a set and let B be a set of binary functions (i.e., with values
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0 or 1) defined on finite subsets of S. We say that B is a binary mess on S if B
satisfies the following properties:

• For each finite set P ⊆ S, there is a function g ∈ B such that dom(g)= P , i.e., g
is defined on P .

• For each g ∈ B and each finite set P ⊆ S, the restriction g|P belongs to B.

Let f be a binary function on S and let B be a binary mess on S. Then f is consis-
tent with B if for every finite set P ⊆ S, f |P ∈ B.

Consistency Principle. For every binary mess B on a set S, there exists a binary
function f on S which is consistent with B.

In order to state the last version of the Prime Ideal Theorem we have to introduce
first some terminology from Propositional Logic: The alphabet of Propositional
Logic consists of an arbitrarily large but fixed set P := {pλ : λ ∈ Λ} of so-called
propositional variables, as well as of the logical operators “¬”, “∧”, and “∨”. The
formulae of Propositional Logic are defined recursively as follows:

• A single propositional variable p ∈ P by itself is a formula.
• If ϕ and ψ are formulae, then so are ¬(ϕ), (ϕ ∧ ψ), and (ϕ ∨ ψ); in Polish

notation, the three composite formulae are ¬ϕ, ∧ϕψ , and ∨ϕψ , respectively.

A realisation of Propositional Logic is a map of P , the set of propositional vari-
ables, to the two element Boolean algebra ({0,1},+, ·,−,0,1). Given a realisation
f of Propositional Logic. By induction on the complexity of formulae we extend f

to all formulae of Propositional Logic (compare with the definition of Lindenbaum’s
algebra): For any formulae ϕ and ψ , if f (ϕ) and f (ψ) have already been defined,
then

f (∧ϕψ)= f (ϕ) · f (ψ), f (∨ϕψ)= f (ϕ)+ f (ψ),

and

f (¬ϕ)=−f (ϕ).

Let ϕ be any formula of Propositional Logic. If the realisation f , extended in the
way just described, maps the formula ϕ to 1, then we say that f satisfies ϕ. Finally,
a set Σ of formulae of Propositional Logic is satisfiable if there is a realisation
which simultaneously satisfies all the formulae in Σ .

Compactness Theorem for Propositional Logic. Let Σ be a set of formulae of Propo-
sitional Logic. If every finite subset of Σ is satisfiable, then also Σ is satisfi-
able.

Notice that the reverse implication of the Compactness Theorem for Propositional
Logic is trivially satisfied.

Now we show that the above principles are all equivalent to the Prime Ideal The-
orem.
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THEOREM 5.15. The following statements are equivalent:

(a) Prime Ideal Theorem.
(b) Ultrafilter Theorem.
(c) Consistency Principle.
(d) Compactness Theorem for Propositional Logic.
(e) Every Boolean algebra has a prime ideal.

Proof. (a) ⇒ (b) The Ultrafilter Theorem is an immediate consequence of the dual
form of the Prime Ideal Theorem.

(b) ⇒ (c) Let B be a binary mess on a non-empty set S. Assuming the Ultrafilter
Theorem we show that there is a binary function f on S which is consistent with B.
Let fin(S) be the set of all finite subsets of S. For each P ∈ fin(S), let

AP = {
g ∈ S2 : g|P ∈ B

}
.

Since B is a binary mess, the intersection of finitely many sets AP is non-empty.
Thus, the family F consisting of all supersets of intersections of finitely many sets
AP is a filter over S2. By the Ultrafilter Theorem, F can be extended to an ultrafilter
U ⊆ P(S2). Since U is an ultrafilter, for each s ∈ S, either {g ∈ S2 : g(s)= 0} or
{g ∈ S2 : g(s)= 1} belongs to U , and we define the function f ∈ S2 by stipulating
that for each s ∈ S, the set As = {g ∈ S2 : g(s)= f (s)} belongs to U . Now, for any
finite set P = {s0, . . . , sn} ⊆ S,

⋂
i≤n Asi ∈U , which shows that f |P ∈ B, i.e., f is

consistent with B.
(c) ⇒ (d) Let Σ be a set of formulae of Propositional Logic and let S ⊆ P be

the set of propositional variables which appear in formulae of Σ . Assume that ev-
ery finite subset of Σ is satisfiable, i.e., for every finite subset Σ0 ⊆ Σ there is
a realisation gΣ0 : SΣ0 → {0,1} which satisfies Σ0, where SΣ0 denotes the set of
propositional variables which appear in formulae of Σ0. Let

BΣ := {
gΣ0 |P :Σ0 ∈ fin(Σ)∧ P ⊆ SΣ0

}
.

Then BΣ is obviously a binary mess and by Consistency Principle there exists a
binary function f on S which is consistent with BΣ . Now, f is a realisation of Σ

and therefore Σ is satisfiable.
(d) ⇒ (e) Let (B,+, ·,−,0,1) be a Boolean algebra and let P := {pu : u ∈ B}

be a set of propositional variables. Further, let ΣB be the following set of formulae
of Propositional Logic:

• p0, ¬p1;
• pu ∨¬p−u (for each u ∈ B);
• ¬(pu1 ∧ . . .∧ pun)∨ pu1+...+un (for each finite set {u1, . . . , un} ⊆ B).
• ¬(pu1 ∨ . . .∨ pun)∨ pu1·...·un (for each finite set {u1, . . . , un} ⊆ B).

Notice that every finite subset of B generates a finite subalgebra of B and that every
finite Boolean algebra has a prime ideal. Now, since every finite prime ideal in a
finite subalgebra of B corresponds to a realisation of a finite subset of ΣB , and vice
versa, every finite subset of ΣB is satisfiable. Thus, by the Compactness Theorem
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for Propositional Logic, ΣB is satisfiable. Let f be a realisation of ΣB and let I =
{u ∈ B : f (pu)= 1}. By definition of ΣB and I , respectively, we get

• f (p0)= 1 and f (p1)= 0; thus, 0 ∈ I but 1 /∈ I .
• f (pu)= 1 − f (¬pu); thus, for all u ∈ B , either u ∈ I or −u ∈ I .
• If f (pu1)= f (pu2)= 1, then f (pu1 ∧ pu2)= 1; thus, for all u1, u2 ∈ I we have

u1 + u2 ∈ I .
• if f (pu1)= 1, then f (pu1 ∨pu2)= 1; thus, for all u1 ∈ I and all u2 ∈ B we have

u1 · u2 ∈ I .

Thus, the set I = {u ∈ B : f (pu)= 1} is a prime ideal in B .
(e) ⇒ (a) Let (B,+, ·,−,0,1) be a Boolean algebra and I ⊆ B an ideal in B .

Define the following equivalence relation on B:

u∼ v ⇐⇒ (u− v)+ (v − u) ∈ I.

Let C be the set of all equivalence classes [u]˜ and define the operations “+”, “·”,
and “−” on C as follows:

[u]˜+ [v]˜= [u+ v] ,̃ [u]˜ · [v]˜= [u · v] ,̃ −[u]˜= [−u] .̃
Now,

(C,+, ·,−, [0] ,̃ [1] )̃
is a Boolean algebra, the so-called quotient of B modulo I . By the Prime Ideal
Theorem, C has a prime ideal J . We leave it as an exercise to the reader to verify
that the set {

u ∈ B : [u]˜∈ J
}

is a prime ideal in B which extends I . �

König’s Lemma and Other Choice Principles

Let us begin by defining some choice principles:

• C(ℵ0,∞): Every countable family of non-empty sets has a choice function (this
choice principle is usually called Countable Axiom of Choice).

• C(ℵ0,ℵ0): Every countable family of non-empty countable sets has a choice
function.

• C(ℵ0,< ℵ0): Every countable family of non-empty finite sets has a choice func-
tion.

• C(ℵ0, n): Every countable family of n-element sets, where n ∈ ω, has a choice
function.

• C(∞,< ℵ0): Every family of non-empty finite sets has a choice function (this
choice principle is usually called Axiom of Choice for Finite Sets).

• C(∞, n): Every family of n-element sets, where n ∈ ω, has a choice function.
This choice principle is usually denoted Cn.
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Another—seemingly unrelated—choice principle is the Ramseyan Partition Princi-
ple, denoted RPP.

• RPP: If X is an infinite set and [X]2 is 2-coloured, then there is an infinite subset
Y of X such that [Y ]2 is monochromatic.

Below we show how these choice principles are related to each other, but first let us
show that C(ℵ0,< ℵ0) and König’s Lemma, denoted by KL, are equivalent.

PROPOSITION 5.16. C(ℵ0,< ℵ0) ⇐⇒ KL.

Proof. (⇒) Let T = (V ,E) be an infinite, finitely branching tree with vertex set V ,
edge set E, and root say v0. The edge set E can be considered as a subset of V ×V ,
i.e., as a set of ordered pairs of vertices indicating the direction from the root to the
top of the tree. Let S0 := {v0}, and for n ∈ ω let

Sn+1 :=
{
v ∈ V : ∃u ∈ Sn

(〈u,v〉 ∈E
)}

and let S :=⋃
n∈ω Sn. Since T is infinite and finitely branching, S is infinite and for

every n ∈ ω, Sn is a non-empty finite set. Further, for every v ∈ S let S(v) be the set
of all vertices u ∈ S such that there exists a non-empty finite sequence s ∈ seq(S)
of length k + 1 (for some k ∈ ω) with s(0) = v and s(k) = u, and for all i ≤ k we
have 〈s(i), s(i+ 1)〉 ∈E. In other words, S(v) is the set of all vertices which can be
reached from v. Notice that (S(v),E|S(v)) is a subtree of T . Since S is infinite and
for all n ∈ ω,

⋃
i∈n Si is finite, for each n ∈ ω there exists a vertex v ∈ Sn such that

S(v) is infinite.
We now proceed as follows: By C(ℵ0,< ℵ0), for each n ∈ ω we can choose a

well-ordering “<n” on Sn and then construct a branch v0, v1, . . . , vn, . . . through T ,
where for all n ∈ ω, vn+1 is the <n+1-minimal element of the non-empty set {v ∈
Sn+1 : 〈vn, v〉 ∈E ∧ “S(v) is infinite”}.

(⇐) Let F = {Fn : n ∈ ω} be a countable family of non-empty finite sets. Fur-
ther, let V = ⋃

k∈ω(
∏

n∈k Fn) and let E ⊆ V × V be the set of all ordered pairs
〈s, t〉 of the form s = 〈x0, . . . , xn〉 and t = 〈x0, . . . , xn, xn+1〉, respectively, where
for each i ∈ n+ 2, xi ∈ Fi (i.e., the sequence t is obtained by adding an element of
Fn+1 to s). Obviously, T = (V ,E) is an infinite, finitely branching tree and there-
fore, by KL, has an infinite branch, say 〈an : n ∈ ω〉. Since, for all n ∈ ω, an belongs
to Fn, the function

f : F −→
⋃

F

Fn %−→ an

is a choice function for F , and since the countable family of finite sets F was
arbitrary, we get C(ℵ0,< ℵ0). �

Obviously, C(ℵ0,< ℵ0)⇒ C(ℵ0, n) for all positive integers n ∈ ω. However, as
a matter of fact we would like to mention that for each n ≥ 2, C(ℵ0, n) is a proper
axiom, i.e., not provable within ZF (for n= 2 see for example PROPOSITION 7.7).
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The following result shows the strength of the choice principles RPP and KL
compared to C(ℵ0,∞) and C(ℵ0, n), respectively:

THEOREM 5.17. C(ℵ0,∞).⇒ RPP .⇒ KL .⇒ C(ℵ0, n).

Proof. C(ℵ0,∞)⇒ RPP: Firstly we show that C(ℵ0,∞) implies that every infinite
set X is transfinite, i.e., there is an infinite sequence of elements of X in which no
element appears twice: Let X be an infinite set and for every n ∈ ω let Fn+1 be the
set of all injections from n + 1 into X. Consider the family F = {Fn+1 : n ∈ ω}.
Since X is infinite, F is a countable family of non-empty sets. Thus, by C(ℵ0,∞),
there is a choice function, say f , on F . For every n ∈ ω let gn := f (Fn+1). With the
countably many injections gn we can easily construct an injection from ω into X.
In particular, we get an infinite sequence 〈ai : i ∈ ω〉 of elements of X in which no
element appears twice. For S := {ai : i ∈ ω} ⊆X, every 2-colouring of [X]2 induces
a 2-colouring of [S]2. Now, by RAMSEY’S THEOREM 2.1, there exists an infinite
subset Y of S such that [Y ]2 is monochromatic (notice that no choice is needed to
establish RAMSEY’S THEOREM for countable sets).

RPP ⇒ KL: Let T = (V ,E) be an infinite, finitely branching tree and let the sets
Sn (for n ∈ ω) be as in the first part of the proof of PROPOSITION 5.16. Define the
colouring π : [V ]2 →{0,1} by stipulating π({u,v})= 0 ⇐⇒ {u,v} ⊆ Sn for some
n ∈ ω. By RPP there exists an infinite subset X ⊆ V such that [X]2 is monochro-
matic. Now, since T is finitely branching, we see that if X ⊆ V is infinite and [X]2
is monochromatic, then [X]2 is of colour 1, i.e., no two distinct elements of X are
in the same set Sn. In order to construct an infinite branch through T , just proceed
as in the first part of the proof of PROPOSITION 5.16.

KL ⇒ C(ℵ0, n): Because C(ℵ0,< ℵ0) ⇒ C(ℵ0, n), this is an immediate conse-
quence of PROPOSITION 5.16. �

The last result of this chapter deals with the relationship of the choice principles
Cn (i.e., C(∞, n)) for different natural numbers n. Before we can state the theo-
rem we have to introduce the following number-theoretical condition: Let m,n be
two positive integers. Then we say that m,n satisfy condition (S) if the following
condition holds:

There is no decomposition of n into a sum of primes, n= p1 + . . .+ ps,

such that pi > m for all 1 ≤ i ≤ s.

THEOREM 5.18. If the positive integers m,n satisfy condition (S) and if Ck holds
for every k ≤m, then also Cn holds.

Proof. Firstly notice that C1 is obviously true. Secondly notice that for n ≤m, the
implication of the theorem is trivially true. So, without loss of generality we may
assume that n >m.

The proof is now by induction on n: Let m < n be a fixed positive integer such
that m,n satisfy condition (S) and assume that the implication of the theorem is
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true for every l < n. Since n,m satisfy (S), n is not a prime and consequently n is
divisible by some prime p < n. Necessarily, p ≤m, since otherwise we could write
n = p + . . .+ p, contrary to (S). Let F = {Aλ : λ ∈ Λ} be a family of n-element
sets. We have to describe a way to choose an element from each set Aλ (λ ∈ Λ).
Take an arbitrary A ∈ F and consider [A]p (i.e., the set of all p-element subsets
of A). Since p ≤m, by the premiss of the theorem there is a choice function g for
[A]p . In other words, for every X ∈ [A]p , g(X) ∈ X, in particular, g(X) ∈ A. For
every a ∈A let

q(a)= ∣∣{X ∈ [A]p : g(X)= a
}∣∣

and let q := min{q(a) : a ∈ A}. Further, let B := {a ∈ A : q(a) = q}. Obviously,
the set B is non-empty and the set [A]p has

(
n
p

)
elements. In order to prove that

A \B is non-empty, we have to show that
(
n
p

)
is not divisible by n. Indeed, because

p divides n, there is a positive integer k which is not divisible by p such that n =
k · pa+1 (for some a ∈ ω). We have(

n

p

)
= k · pa+1

p
· (n− 1) · · · · · (n− p+ 1)

(p− 1) · · · · · 1
= k · pa+1

p
·
(
n− 1

p− 1

)
,

and since p does obviously not divide
(
n−1
p−1

)
, we find that

(
n
p

)
is divisible by pa , but

not by pa+1; in particular,
(
n
p

)
is not divisible by n= k · pa+1. Thus, the sets B and

A \ B are both non-empty, and for l1 := |B| and l2 := |A \ B| we get that l1 and l2
are positive integers with l1 + l2 = n. Moreover, m, l1 or m, l2 satisfy condition (S),
since otherwise we could write l1 = p1 + . . .+ pr and l2 = pr+1 + . . .+ ps , where
p1, . . . , ps are primes bigger than m, which would imply that n = p1 + . . . + ps ,
contrary to the assumption that m,n satisfy (S). Thus, by the induction hypothesis,
either Cl1 holds and we choose an element in B , or, if Cl1 fails, Cl2 holds and we
choose an element in A \B . Finally, since A ∈ F was arbitrary, this completes the
proof. �

NOTES

The Axiom of Choice. Fraenkel writes in [26, p. 56 f.] that the Axiom of Choice is
probably the most interesting and, in spite of its late appearance, the most discussed
axiom of Mathematics, second only to Euclid’s axiom of parallels which was intro-
duced more than two thousand years ago. We would also like to mention a different
view to choice functions, namely the view of Peano. In 1890, Peano published a
proof in which he was constrained to choose a single element from each set in a cer-
tain infinite sequence A1,A2, . . . of infinite subsets of R. In that proof, he remarked
carefully (cf. [73, p. 210]): But as one cannot apply infinitely many times an arbi-
trary rule by which one assigns to a class A an individual of this class, a determinate
rule is stated here, by which, under suitable hypotheses, one assigns to each class
A an individual of this class. To obtain his rule, he employed least upper bounds.
According to Moore [66, p. 76], Peano was the first mathematician who—while
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accepting infinite collections—categorically rejected the use of infinitely many ar-
bitrary choices.

The difficulty is well illustrated by a Russellian anecdote (cf. Sierpiński [82,
p. 125]): A millionaire possesses an infinite number of pairs of shoes, and an in-
finite number of pairs of socks. One day, in a fit of eccentricity, he summons his
valet and asks him to select one shoe from each pair. When the valet, accustomed
to receiving precise instructions, asks for details as to how to perform the selec-
tion, the millionaire suggests that the left shoe be chosen from each pair. Next day
the millionaire proposes to the valet that he select one sock from each pair. When
asked as to how this operation is to be carried out, the millionaire is at a loss for
a reply, since, unlike shoes, there is no intrinsic way of distinguishing one sock of a
pair from the other. In other words, the selection of the socks cannot be carried out
without the aid of some choice function.

As long as the implicit and unconscious use of the Axiom of Choice by Can-
tor and others involved only generalised arithmetical concepts and properties well-
known from finite numbers, nobody took offence. However, the situation changed
drastically after Zermelo [107] published his first proof that every set can be well-
ordered—which was one of the earliest assertions of Cantor. It is worth mentioning
that, according to Zermelo [107, p. 514] & [108, footnote p. 118], it was in fact
the idea of Erhard Schmidt to use the Axiom of Choice in order to build the f -sets.
Zermelo considered the Axiom of Choice as a logical principle, that cannot be re-
duced to a still simpler one, but is used everywhere in mathematical deductions
without hesitation (see [107, p. 516]). Even though in Zermelo’s view the Axiom
of Choice was “self-evident”, which is not the same as “obvious” (see Shapiro [81,
§5] for a detailed discussion of the meaning of “self-evidence”), not all mathemati-
cians at that time shared Zermelo’s opinion. Moreover, after the first proof of the
Well-Ordering Principle was published in 1904, the mathematical journals (espe-
cially volume 60 of Mathematische Annalen) were flooded with critical notes re-
jecting the proof (see for example Moore [66, Chapter 2]), mostly arguing that the
Axiom of Choice was either illegitimate or meaningless (cf. Fraenkel, Bar-Hillel, and
Lévy [26, p. 82]). The reason for this was not only due to the non-constructive char-
acter of the Axiom of Choice, but also because it was not yet clear what a “set” should
be. So, Zermelo decided to publish a more detailed proof, and at the same time tak-
ing the opportunity to reply to his critics. This resulted in [108], his second proof
of the Well-Ordering Principle which was published in 1908, the same year as he
presented his first axiomatisation of Set Theory in [108]. It seems that this was not a
coincidence. Moore [66, p. 159] writes that Zermelo’s axiomatisation was primarily
motivated by a desire to secure his demonstration of the Well-Ordering Principle and,
in particular, to save his Axiom of Choice. Moreover, Hallett [32, p. xvi] goes even
further by trying to show that the selection of the axioms themselves was guided
by the demands of Zermelo’s reconstructed [second] proof. Hallett’s statement is
motivated by a remark on page 124 in Zermelo [108], where he emphasises that
the proof is just based on certain fixed principles to build initial sets and to derive
new sets from given ones—exactly what we would require for principles to form an
axiomatic system of Set Theory.



128 5 The Axiom of Choice

We would like to mention that because of its different character (cf. Bernays [3])
and since he considered the Axiom of Choice as a general logical principle, he did
not include the Axiom of Choice to his second axiomatic system of Set Theory.

For a comprehensive survey of Zermelo’s Axiom of Choice, its origins, develop-
ment, and influence, we refer the reader to Moore [66] (see also Kanamori [46],
Jech [41], and Fraenkel, Bar-Hillel, and Lévy [26, Chapter II, §4]); and for a biog-
raphy of Zermelo (including the history of AC and axiomatic Set Theory) we refer
the reader to Ebbinghaus [17].

Gödel’s Constructible Universe. According to Kanamori [45, p. 28 ff.], in Octo-
ber of 1935 Gödel informed von Neumann at the Institute for Advanced Study in
Princeton that he had established the relative consistency of the Axiom of Choice.
This he did by devising his constructible (not constructive!) hierarchy L (for “law”)
and verifying the Axiom of Choice and the rest of the ZF axioms there. Gödel con-
jectured that the Continuum Hypothesis would also hold in L, but he soon fell ill
and only gave a proof of this and the Generalised Continuum Hypothesis (i.e., for
all α ∈ �, 2ωα = ωα+1) two years later. The crucial idea apparently came to him
during the night of June 14/15, 1937 (see also [31, pp. 1–8]).

Gödel’s article [28] was the first announcement of these results, in which he
describes the model L as the class of all “mathematically constructible” sets, where
the term “constructible” is to be understood in the semi-intuitionistic sense which
excludes impredicative procedures. This means “constructible” sets are defined to
be those sets which can be obtained by Russell’s ramified hierarchy of types, if
extended to include transfinite orders. In the succeeding article [29], Gödel provided
more details in the context of ZF, and in his monograph [30]—based on lectures
given at the Institute for Advanced Study during the winter of 1938/39—Gödel gave
another presentation of L. This time he generated L set by set with a transfinite
recursion in terms of eight elementary set generators, a sort of Gödel numbering
into the transfinite (cf. Kanamori [45, p. 30], and for Gödel’s work in Set Theory see
Kanamori [47]).

Equivalent Forms of the Axiom of Choice. The literature gives numerous examples
of theorems which are equivalent to the Axiom of Choice and a huge collection
of such equivalent forms of the Axiom of Choice was accumulated by Rubin and
Rubin [79, 80].

The most popular variants of the Axiom of Choice—and the most often used in
mathematical proofs—are probably the Well-Ordering Principle (discussed above),
the Kuratowski–Zorn Lemma, and Teichmüller’s Principle.

The Kuratowski–Zorn Lemma was proved independently by Kuratowski [53] and
more than a decade later by Zorn [106] (see Moore [66, p. 223] and also Camp-
bell [13]). Usually, the Kuratowski–Zorn Lemma is deduced quite easily from the
Well-Ordering Principle. The direct deduction from the Axiom of Choice presented
above (THEOREM 5.3) is due to Kneser [51], who also proved LEMMA 5.2 which
was stated without proof by Bourbaki [12, p. 37 (lemme fondamental)].

Teichmüller’s Principle was formulated independently by Tukey [103] and slightly
earlier by Teichmüller in [97], where he provides also some equivalent forms of this
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very useful principle. Teichmüller himself was a member of the Nazi party and
joined the army in 1939. Fighting first in Norway and then at the Eastern Front, he
eventually died in 1943.

Kurepa’s Principle was introduced by Kurepa in [54], where he showed that
Kurepa’s Principle together with the Linear-Ordering Principle—which states that
every set can be linearly ordered—implies the Axiom of Choice. The proof that—in
the presence of the Axiom of Foundation—Kurepa’s Principle implies the Axiom of
Choice is due to Felgner [18] (see also Felgner and Jech [20] or Jech [40, Theo-
rem 9.1(a)]).

The proof that “every vector space has an algebraic basis” implies Multiple Choice
is taken from Blass [9], and the proof that Multiple Choice implies Kurepa’s Princi-
ple is taken from Jech [40, Theorem 9.1(a)] (compare with Chapter 7 | RELATED

RESULT 44).
Among the dozens of cardinal relations which are equivalent to the Axiom of

Choice (see for example Lindenbaum and Tarski [60], Bachmann [1, §31], or
Moore [66, p. 330 f.]), we just mentioned three.

In 1895, Cantor [14, §2] asserted the Trichotomy of Cardinals without proof, and
in a letter of 28 July 1899 (cf. [16, pp. 443–447]) he wrote to Dedekind that the
Trichotomy of Cardinals follows from the Well-Ordering Principle. However, their
equivalence remained unproven until Hartogs [34] established it in 1915 (cf. also
Moore [66, p. 10]). As a matter of fact we would like to mention that—according to
Sierpiński [82, p. 99 f.]—Leśniewski showed that Trichotomy of Cardinals is equiv-
alent to the statement that for any two cardinals n and m, where at least one of these
cardinals is infinite, we always have n+m= n or n+m=m.

THEOREM 5.5(c)—which is to some extent a dualisation of the Trichotomy of
Cardinals—was stated without proof by Lindenbaum [60, p. 312 (A6)] and the proof
given above is taken from Sierpiński [83, p. 426].

The fact that the cardinal equation m2 =m implies the Axiom of Choice is due to
Tarski [87] (see also Bachmann [1, V, p. 140 ff.]).

Cardinal Arithmetic in the Presence of AC. The definition of cardinals given above
can also be found for example in von Neumann [72, VII.2. p.731].

The first proof of THEOREM 5.7 appeared in Hessenberg [38, p. 593] (see also
Jourdain [44]).

Regularity of cardinals was investigated by Hausdorff, who also raised the ques-
tion of existence of regular limit cardinals (cf. [35, p. 131]).

The INEQUALITY OF KÖNIG–JOURDAIN–ZERMELO 5.11—also known as
König’s Theorem—was proven by König [52] (but only for countable sums and
products), and independently by Jourdain [43] and by Zermelo [110] (for historical
facts see Moore [66, p. 154] and Fraenkel [25, p. 98]). Obviously, the INEQUALITY

OF KÖNIG–JOURDAIN–ZERMELO implies the Axiom of Choice (since it guarantees
that every Cartesian product of non-empty sets is non-empty), and consequently we
see that the INEQUALITY OF KÖNIG–JOURDAIN–ZERMELO is equivalent to the
Axiom of Choice.
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Algebras. Boolean algebra is named after George Boole who—according to Rus-
sell—discovered Pure Mathematics. Even though this might be an exaggeration, it
is true that Boole was one of the first to view Mathematics as the study of abstract
structures rather than as the science of magnitude, and he was the first who applied
successfully mathematical techniques to Logic (cf. Boole [10, 11]) and his work
evolved into the modern theory of Boolean algebras and algebraic Logic. In 1849,
Boole was appointed at the newly founded Queen’s College in Cork, where he died
in 1864 as a result of pneumonia caused by walking to a lecture in a December
downpour and lecturing all day in wet clothes (see also MacHale [61]).

Lindenbaum’s algebra is named in memory of the Polish mathematician Adolf
Lindenbaum, who was killed by the Gestapo at Nowa Wilejka in the summer of
1941. Lindenbaum and Tarski (see for example Tarski [89–91]) developed the idea
of viewing the set of formulae as an algebra (with operations induced by the logical
connectives) independently around 1935; however, Lindenbaum’s results were not
published (see Rasiowa and Sikorski [78, footnote to page 245]).

For the history of abstract algebraic Logic and Boolean algebras we refer the
reader to Font, Jansana, and Pigozzi [22].

Prime Ideals. Ideals and prime ideals on algebras of sets where investigated for
example by Tarski in [93].

The notion of Lindenbaum’s algebra and the Compactness Theorem for Propo-
sitional Logic is taken from Bell and Slomson [2, Chapter 2]. The equivalent forms
of the Prime Ideal Theorem are taken from Jech [40, Chapter 2, §3], and the corre-
sponding references can be found in [40, Chapter 2, §7]. We would like to mention
that the Ultrafilter Theorem, which is just the dual form of the Prime Ideal Theorem,
is due to Tarski [88].

Ramsey’s Theorem as a Choice Principle. RAMSEY’S ORIGINAL THEOREM (cf.
Chapter 2) implies that every infinite set X has the following property: For every 2-
colouring of [X]2 there is an infinite subset Y of X such that [Y ]2 is monochromatic.
As mentioned in Chapter 2, Ramsey [76] explicitly indicated that his proof of this
theorem used the Axiom of Choice. Later, Kleinberg [50] showed that every proof
of RAMSEY’S ORIGINAL THEOREM must use the Axiom of Choice, although rather
weak forms of the Axiom of Choice like C(ℵ0,∞) suffice (see THEOREM 5.17). For
the position of Ramsey’s Original Theorem in the hierarchy of choice principles we
refer the reader to Blass [8] (see also RELATED RESULT 31).

For the fact that none of the implications in THEOREM 5.17 is reversible we refer
the reader to Howard and Rubin [39].

From Countable Choice to Choice for Finite Sets. The Countable Axiom of Choice
asserts that every countable family of non-empty sets has a choice function, whereas
the Axiom of Choice for Finite Sets asserts that every family of non-empty finite
sets has a choice function. Replacing the finite sets in the latter choice principle by
n-element sets (for natural numbers n ≥ 2), we obtained the choice principles Cn
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which assert that every family of n-element sets has a choice function. Combining
these two choice principles we get in fact versions of König’s Lemma, namely choice
principles like C(ℵ0,< ℵ0) and C(ℵ0, n) (for positive integers n≥ 2).

The proof of THEOREM 5.18 is taken from Jech [40, p. 111] and is optimal in
the following sense: If the positive integers m,n do not satisfy condition (S), then
there is a model of Set Theory in which Ck holds for every k ≤m but Cn fails (see
the proof of Theorem 7.16 in Jech [40]).

RELATED RESULTS

22. Hausdorff’s Principle. Among the numerous maximality principles which are
equivalent to the Axiom of Choice, we like to mention the one known as Haus-
dorff’s Principle (cf. Hausdorff [35, VI, §1, p. 140]):

Hausdorff’s Principle. Every partially ordered set has a maximal chain (maximal
with respect to inclusion “⊆”).

For the history of Hausdorff’s Principle see Moore [66, Section 3.4, p. 167 ff.]
and a proof of the equivalence with the Axiom of Choice can be found for ex-
ample in Bernays [5, p. 142 ff.].

23. Bases in vector spaces and the Axiom of Choice. Relations between the ex-
istence or non-existence of bases in vector spaces and some weaker forms
of the Axiom of Choice are investigated for example in Keremedis [48, 49],
Läuchli [55], and Halpern [33].

24. Cardinal relations which are equivalent to AC. Below we list a few of the
dozens of cardinal relations which are equivalent to the Axiom of Choice (mainly
taken from Tarski [87]):
(a) m · n=m+ n for all infinite cardinals m and n.
(b) If m2 = n2, then m= n.
(c) If m< n and p< q, then m+ p< n+ q.
(d) If m< n and p< q, then m · p< n · q.
(e) If m+ p< n+ p, then m< n.
(f) If m · p< n · p, then m< n.
(g) If 2m<m+ n, then m< n.
For the proofs we refer the reader to Tarski [87] and Sierpiński [83, p. 421]
(compare (g) with Chapter 4 | RELATED RESULT 17). More such cardinal rela-
tions can be found for example in Howard and Rubin [39, p. 82 ff.], Rubin and
Rubin [80, p. 137 ff.], Moore [66, p. 330 f.], and Bachmann [1, §31]).

25. Successors of Cardinals. In [96] Tarski investigated the following three types
of successor of a cardinal number:
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S1. For every cardinal m there is a cardinal n such that m< n and the formula
m< p< n does not hold for any cardinal p.

S2. For every cardinal m there is a cardinal n such that m < n and for every
cardinal p the formula m< p implies n≤ p.

S3. For every cardinal m there is a cardinal n such that m < n and for every
cardinal p the formula p< n implies p≤m.

Tarski [96] showed that S1 can be proved without the help of the Axiom of
Choice, whereas S2 is equivalent to this axiom. The relation of S3 with the
Axiom of Choice was further investigated by Sobociński [84] and Truss [100]
(see also Bachmann [1, §31, p. 141]).

26. A formulation by Sudan. Sudan [85] showed that the following statement is
equivalent to the Axiom of Choice: Let m, n, and p be arbitrary infinite cardinals.
If m and n are either equal or n is a S1-successor (i.e., a successor in the in the
sense of S1) of m, then also p · m and p · n are either equal or p · n is an S1-
successor of p · m. For the influence of Tarski [87] on Sudan see Moore [66,
p. 218].

27. A formulation by Tarski. There are also some equivalents of the Axiom of Choice
which seemingly are far away of being choice principles. The following formu-
lation by Tarski [92] is surely of this type: For every set N there is a set M such
that X ∈M if and only if X ⊆M and for all Y ⊆X we have |Y | �= |N |. Similar
statements can be found in Tarski [94, 95] (see also Bachmann [1, §31.3]).

28. Singular Cardinal Hypothesis. The Singular Cardinal Hypothesis states that
for every singular cardinal κ , 2cf(κ) < κ implies κcf(κ) = κ+. Obviously, the
SINGULAR CARDINAL HYPOTHESIS follows from the Generalised Continuum
Hypothesis. On the other hand, the SINGULAR CARDINAL HYPOTHESIS is
not provable within ZFC and in fact, the failure of the SINGULAR CARDINAL

HYPOTHESIS is equiconsistent with the existence of a certain large cardinal (cf.
Jech [42, p. 58 f. & Chapter 24]).

29. Model Theory and the Prime Ideal Theorem. Using Lindenbaum’s algebra, Ra-
siowa and Sikorski [77] gave an alternative proof of GÖDEL’S COMPLETENESS

THEOREM 3.4, and Henkin [36] proved that the Prime Ideal Theorem is equiv-
alent to the COMPACTNESS THEOREM 3.7. Notice that by THEOREM 5.15 we
just find that the Prime Ideal Theorem is equivalent to the Compactness The-
orem for Propositional Logic, which is a seemingly weaker statement than the
COMPACTNESS THEOREM 3.7.

30. Colouring infinite graphs and the Prime Ideal Theorem∗. For n a positive inte-
ger consider the following statement.

Pn: If G is a graph such that every finite subgraph of G is n-colourable, then
G itself is n-colourable.
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The following implications are provable in Set Theory without the Axiom of
Choice (see Mycielski [69, 70]):

PIT ⇒ Pn+1 ⇒ Pn ⇒ C(∞, n), C(∞,2) ⇒ P2.

On the other hand, Lévy [59] showed that for any n, ZF � C(∞, n)⇒ P3. Sur-
prisingly, Läuchli showed in [57] that P3 implies PIT, and consequently, for all
n ≥ 3, the equivalence Pn ⇒ PIT is provable in Set Theory without the Axiom
of Choice. However, the question whether there is a “direct” proof of P3 ⇒ P4

without involving PIT is still open.

31. Ramsey’s Theorem, König’s Lemma, and countable choice. Truss investigated
in [102] versions of König’s Lemma, where restrictions are placed on the de-
gree of branching of the finitely branching tree. In particular, he investigated
C(ℵ0, n) for different n ∈ ω. Later in [24], Forster and Truss considered the
relation between versions of Ramsey’s Original Theorem and these versions of
König’s Lemma.

The choice principle C(ℵ0, n) was also investigated by Wiśniewski [105],
where it is compared with C(∞, n) and other weak forms of the Axiom of
Choice.

32. Ramsey Choice∗. Related to Cn are the following two choice principles: C−
n

states that every infinite family X of n-element sets has an infinite subfamily
Y ⊆X with a choice function; and RCn states that for every infinite set X there
is an infinite subset Y ⊆ X such that [Y ]n has a choice function. These two
choice principles are both strictly weaker than Cn (cf. Truss [99]). Montenegro
investigated in [65] the relation between RCn and C−

n for some small values
of n: It is not hard to see that RC2 ⇒ C−

2 and RC3 ⇒ C−
3 (cf. [65, Lemma]).

However, it is quite tricky to prove that RC4 ⇒ C−
4 (cf. [65, Theorem]) and it is

still open whether RC5 implies C−
5 .

33. Well-ordered and well-orderable subsets of a set. For a set x, s(x) is the set
of all subsets of x which can be well-ordered, and w(x) is the set of all well-
orderings of subsets of x. Notice that s(x) ⊆ P(x), whereas w(x) ⊆ P(x ×
x). Tarski [94] showed—without the help of the Axiom of Choice—that |x| <
|s(x)|, for any set x, and his proof also yields |x|< |w(x)|. Later, Truss showed
in [101] that for any infinite set x and for any n ∈ ω we have |s(x)| � |xn| as
well as |xn|< |w(x)|. Furthermore, he showed that if there is a choice function
for the set of finite subsets of x, then |xn|< |s(x)|. According to Howard and
Rubin [39, p. 371] it is not known whether |xn| < |s(x)| (form 283 of [39])
is provable in ZF. The cardinality of the set w(x) was further investigated by
Forster and Truss in [23].

34. Axiom of Choice for families of n-element sets. For different n ∈ ω, Cn has been
extensively studied by Mostowski in [67], and most of the following results—
which are all provable without the help of the Axiom of Choice—can be found
in that paper (see also Truss [99], Gauntt [27], or Jech [40, Chapter 7, §4]):



134 5 The Axiom of Choice

(a) If m,n satisfy condition (S), then n < 8m2.
(b) C2 ⇒ Cn is provable if and only if n ∈ {1,2,4}.
(c) For a finite set Z = {m1, . . . ,mk} of positive integers let CZ denote the

statement Cm1 ∧ · · · ∧ Cmk
. We say that Z,n satisfy condition (S) if for

every decomposition of n into a sum of primes, n= p1 + . . .+ ps , at least
one prime pi belongs to Z. Now, the following condition holds: If Z,n

satisfy condition (S), then CZ implies Cn.
(d) Let Sn be the group of all permutation of {1, . . . , n}. A subgroup G of Sn

is said to be fixed point free if for every i ∈ {1, . . . , n} there is a π ∈ Sn

such that π(i) �= i. Let Z be again a finite set of positive integers. We say
that Z, n satisfy condition (T) if for every fixed point free subgroup G of
Sn there is a subgroup H of G and a finite sequence H1, . . . ,Hk of proper
subgroups of H such that the sum of indices [H :H1] + . . .+ [H :Hk] is
in Z. Now, the following condition holds: If Z,n satisfy condition (T), then
CZ implies Cn. Moreover we have: If Z, n do not satisfy condition (T), then
there is a model of ZF in which CZ holds and Cn fails.

We would also like to mention that the Axiom of Choice for Finite Sets
C(∞,< ℵ0) is unprovable in ZF, even if we assume that Cn is true for each
n ∈ ω (cf. Jech [40, Chapter 7, §4], or Lévy [58] and Pincus [75]).

35. Ordering principles. Among the numerous choice principles which deal with
ordering we mention just two:

Ordering Principle. Every set can be linearly ordered.

If “<” and “≺” are partial orderings of a set P , then we say that “≺” extends
“<” if for any p,q ∈ P , p < q implies p ≺ q .

Order-Extension Principle. Every partial ordering of a set P can be extended to
a linear ordering of P .

Obviously, the Order-Extension Principle implies the Ordering Principle, but
the other direction fails (see Mathias [62]). Thus, the Ordering Principle is
slightly weaker than the Order-Extension Principle. Furthermore, Szpilrajn—
who changed his name from Szpilrajn to Marczewski while hiding from the
Nazi persecution—showed in [86] that the Order-Extension Principle follows
from the Axiom of Choice, where one can even replace the Axiom of Choice by
the Prime Ideal Theorem (see for example Jech [40, 2.3.2]). We leave it as an
exercise to the reader to show that the Ordering Principle implies C(∞,< ℵ0).
Thus, we get the following sequence of implications:

PIT ⇒ Order-Extension Principle ⇒ Ordering Principle ⇒ C(∞,< ℵ0).

On the other hand, none of these implications is reversible (see Läuchli [56]
and Pincus [74, §4B], Felgner and Truss [21, Lemma 2.1], Mathias [62], or
Jech [40, Chapter 7]; compare also with Chapter 7 | RELATED RESULT 48).
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36. More ordering principles. Mathias showed in [62] that the following assertion
does not imply the Order-Extension Principle:

If X is a set of well-orderable sets, then there is a function f such that for each
x ∈X, f (x) is a well-ordering of x.

On the other hand, Truss [98] showed that following assertion, apparently
only slightly stronger than the ordering principle above, implies the Axiom of
Choice:

If X is a set and f a function on X such that for each x ∈ X, f (x) is a non-
empty set of well-orderings of x, then {f (x) : x ∈X} has a choice function.

37. Principle of Dependent Choices. Finally, let us mention a choice principle
which is closely related to the Countable Axiom of Choice. Its meaning is that
one is allowed to make a countable number of consecutive choices.

Principle of Dependent Choices. If R is a binary relation on a non-empty set
S, and if for every x ∈ S there exists y ∈ S with xRy, then there is a sequence
〈xn : n ∈ ω〉 of elements of S such that for all n ∈ ω we have xnRxn+1.

The Principle of Dependent Choices, usually denoted DC, was formulated
by Bernays in [4] and for example investigated by Mostowski [68] (see also
Jech [40, Chapter 8]). Even though DC is significantly weaker than AC, it is
stronger than C(ℵ0,∞) and (thus) implies for example that every Dedekind-
finite set is finite (i.e., every infinity set is transfinite). Thus, in the presence of
DC, many propositions are still provable. On the other hand, having just DC
instead of full AC, most of the somewhat paradoxical constructions (e.g., mak-
ing two balls from one) cannot be carried out anymore (see Herrlich [37] for
some ‘disasters’ that happen with and without AC). In my opinion, DC reflects
best our intuition, and consequently, ZF + DC would be a quite reasonable and
smooth axiomatic system for Set Theory; however, it is not suitable for really
exciting results.

38. An alternative to the Axiom of Choice. Let ω → (ω)ω be the statement that
whenever the set [ω]ω is coloured with two colours, there exists an infinite
subset of ω, all whose infinite subsets have the same colour (compare with
the Ramsey property defined in Chapter 9). In Chapter 2 we have seen that
ω → (ω)ω fails in the presence of the Axiom of Choice. On the other hand,
Mathias proved that under the assumption of the existence of an inaccessible
cardinal (defined on page 302), ω → (ω)ω is consistent with ZF + DC (see
Mathias [64, Theorem 5.1]). The combinatorial statement ω→ (ω)ω has many
interesting consequences: For example Mathias [63] gave an elementary proof
of the fact that if ω→ (ω)ω holds, then there are no so-called rare filters and ev-
ery ultrafilter over ω is principal (see Mathias [64, p. 91 ff.] for similar results).

39. The Axiom of Determinacy. Another alternative to the Axiom of Choice is the
Axiom of Determinacy, which asserts that all games of a certain type are deter-
mined. In order to be more precise we have to introduce first some terminology:
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With each subset A of ωω we associate the following game GA, played by two
players I and II. First I chooses a natural number a0, then II chooses a natural
number b0, then I chooses a1, then II chooses b1, and so on. The game ends
after ω steps: if the resulting sequence 〈a0, b0, a1, b1, . . .〉 is in A, then I wins,
otherwise II wins. A strategy (for I or II) is a rule that tells the player what move
to make depending on the previous moves of both players; and a strategy is a
winning strategy if the player who follows it always wins (for a more formal
definition see Chapter 10). The game GA is determined if one of the players has
a winning strategy.

Axiom of Determinacy (AD). For every set A⊆ ωω the game GA is determined,
i.e., either player I or player II has winning strategy.

An easy diagonal argument shows that AC is incompatible with AD, i.e., as-
suming the Axiom of Choice there exists a set A⊆ ωω such that the game GA is
not determined (cf. Jech [42, Lemma 33.1]). In contrast we find that AD implies
that every countable family of non-empty sets of reals has a choice function (cf.
Jech [42, Lemma 33.2]). Moreover, one can show that Con(ZF + AD) implies
Con(ZF + AD + DC), thus, even in the presence of AD we still can have DC.
Furthermore, AD implies that sets of reals are well behaved, e.g., every set of
reals is Lebesgue measurable, has the property of Baire, and every uncountable
set of reals contains a perfect subset, i.e., a closed set without isolated points
(cf. Jech [42, Lemma 33.3]); however, it also implies that every ultrafilter over
ω is principal (cf. Kanamori [45, Proposition 28.1]) and that ℵ1 and ℵ2 are both
measurable cardinals (cf. Jech [42, Theorem 33.12]). Because of its nice conse-
quences for sets of reals, AD is a reasonable alternative to AC, especially for the
investigation of the real line (for the beauty of ZF + AD see for example Her-
rlich [37, Section 7.2]). In 1962, when Mycielski and Steinhaus [71] introduced
the Axiom of Determinacy, they did not claim this new axiom to be intuitively
true, but stated that the purpose of their paper is only to propose another theory
which seems very interesting although its consistency is problematic. Since AD
implies the existence of large cardinals, the consistency of ZF + AD cannot be
derived from that of ZF. Moreover, using very sophisticated techniques—far
beyond the scope of this book—Woodin proved that ZF + AD is equiconsistent
with ZFC + “There are infinitely many Woodin cardinals” (cf. Kanamori [45,
Theorem 32.16] or Jech [42, Theorem 33.27]). Further results and the corre-
sponding references can be found for example in Kanamori [45, Chapter 6] and
Jech [42, Chapter 33].
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