Algebra I

Serie 6

Permutationsgruppen, Semidirektes Produkt

Abgabe bis 11. November

- **37.** (a) Zeige: Sind $\rho, \sigma \in S_n$ disjunkte Permutationen, dann gilt $(\rho \sigma)^k = \sigma^k \rho^k$ für alle $k \in \mathbb{N}$.
 - (b) Zeige: Ist ρ ein k-Zykel in S_n , dann ist $\operatorname{ord}(\rho) = k$.
 - (c) Zeige: Ist $\pi \in S_n$ ein Produkt paarweise disjunkter Zyklen der Länge k_1, \ldots, k_r , so ist $\operatorname{ord}(\pi) = \operatorname{kgV}(k_1, \ldots, k_r)$.
- **38.** Zeige, dass für jedes $n \ge 1$ die Gruppe der orthogonalen Matrizen $O(n, \mathbb{R})$ isomorph zum semidirekten Produkt $SO(n, \mathbb{R}) \rtimes C_2$ ist.
- 39. Eine Folge von Gruppen und Homomorphismen der Form

$$\{e\} \to G' \xrightarrow{\beta} G \xrightarrow{\alpha} G'' \to \{e\},$$
 (*)

heisst **kurze exakte Folge**, falls β injektiv und α surjektiv ist, und $\ker(\alpha) = \operatorname{Im}(\beta)$. Man sagt, dass die kurze exakte Folge (*) **zerfällt**, falls es einen Homomorphismus $\gamma \colon G'' \to G$ gibt so, dass $\alpha \circ \gamma = id_{G''}$ ist.

(a) Seien N, H zwei Gruppen und sei $G = N \rtimes H$ das semidirekte Produkt von N und H. Zeige, dass es eine kurze exakte Folge

$$\{e\} \to N \xrightarrow{\beta} G \xrightarrow{\alpha} H \to \{e\}$$

gibt, die zerfällt.

(b) Sei

$$\{e\} \to N \stackrel{\beta}{\to} G \stackrel{\alpha}{\to} H \to \{e\}$$

eine kurze exakte Folge, die zerfällt.

Zeige, dass dann $G \cong N \rtimes_{\varphi} H$.

40. Sei p > 2 eine Primzahl und sei G eine Gruppe mit Ordnung |G| = 2p. Zeige, dass G entweder zyklisch oder isomorph zur Diedergruppe D_{2p} ist. **41.** Seien zwei Gruppen N, H und zwei Homomorphismen $\varphi, \varphi' \colon H \to \operatorname{Aut}(N)$ gegeben. Es seien $N \rtimes_{\varphi} H$ und $N \rtimes_{\varphi'} H$ die semidirekten Produkte.

Zeige, dass diese beiden Gruppen in den folgenden Situationen isomorph sind:

(a) Sei $\alpha \in \operatorname{Aut}(N)$ ein Automorphismus so, dass $\varphi_h' = \alpha \circ \varphi_h \circ \alpha^{-1}$. Dann gilt

$$N \rtimes_{\varphi} H \cong N \rtimes_{\varphi'} H.$$

(b) Sei $\beta \in Aut(H)$ ein Automorphismus so, dass $\varphi = \varphi' \circ \beta$. Dann gilt

$$N \rtimes_{\varphi} H \cong N \rtimes_{\varphi'} H.$$

42. Bestimme, bis auf Isomorphie, alle Gruppen der Ordnung 28.