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Some time ago, W. Krull observed that by the Axiom of Choice, every com-
mutative ring with 1 # 0 has a maximal ideal. Dana Scott [2] asked whether the
converse holds: If every commutative ring with 1 ^ 0 has a maximal ideal, then the
Axiom of Choice is true. The answer is Yes. In fact the following stronger statement
is true.

THEOREM. In Zermelo-Fraenkel set theory, the statement " Every unique factoris-
ation domain has a maximal ideal" implies the Axiom of Choice.

We begin the proof by paraphrasing the Axiom of Choice. By a tree we mean a
partially ordered set (T, ^ ) such that for every te T, the set ? = {reT : r < t) is
linearly ordered. A branch in the tree is a maximal linearly ordered subset. Two
elements r, t of T are said to be comparable if either r < / or t < r.

Let Tree be the statement: Every tree has a branch.

LEMMA 1. Tree is equivalent to the Axiom of Choice.

Proof. Clearly Choice implies Tree. For the converse, assume Tree; we show
that every set can be well-ordered. Let A be any set, and let T be the set of injective
maps / : a -> A with a an ordinal. (This is a set, by Hartogs' Theorem.) Put / < g
if and only if g extends/. Then (T, ^ ) is a tree, which must have a branch B, and
UB is an injective map h : /? -*• A for some ordinal /?. But h is also onto A, or we could
extend h within T, contradicting maximality.

Now let (T, <) be a tree. We construct a ring R(T, ^ ) as follows. Let F be the
field of rationals, and form the polynomial ring F[T] with the elements te T as
indeterminates. This ring F[T] is a unique factorisation domain. (No Choice is
needed here.) If G £ 7, then GF[T] is a prime ideal of F[T].

Let L be the set of linearly ordered subsets of T, and define

S = F[T]- M GF[T].
Get

Then S is the complement of a union of prime ideals, so S is multiplicatively closed.
Inverting S, we put

R(T, ^^S-'FIT].

Every element c of R(T, <) is of the form x/s with xe F[T] and seS; if common
factors are cancelled, x and s are unique up to factors in F. The element c is in-
vertible in R(T, ^) if and only if for all t e T, x$ 1F[T]. The ring R(T; ^ ) is a unique
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factorisation domain. (Still no Choice is needed.) Readers of Section 9 of Gordon
and Robson [1] will see where this construction comes from.

Until further notice, put R = R(T, ^ ) , and suppose that R has a maximal ideal M.
Let c be any element of M; express c as x/s, so that x and s have no common non-
scalar factors. Then x can be written as qiml+ ... +qnmn with qu ...,qn non-zero
elements of F and mlt ...,mn distinct monomials over 71 Since c is not invertible,
there is at least one finite linearly ordered set A £ T such that (1) each monomial
mi has a factor in A, and (2) each element of A occurs as a factor of some mr The
set A is not necessarily unique, but clearly there are at most finitely many choices
for it, say Alt ...,Ak. Put E(c) = {max A{: 1 ̂  i ^ A:}. If teE{c), then cetR.
If c = 0, then A is empty. If c # 0, and d is any other element of M which involves
the monomials ml,...,mn (and perhaps others), then for every reE(d) there is
t e E(c) such that t ^ r.

We define D to be the set of those t e T such that for every non-zero c G M, there
is r G £(c) which is comparable with /.

LEMMA 2. D s M.

Proof. Let / e D . H t$M, then since M is maximal, there are elements aeR
and CEM such that at+c = 1. Since {/}GL, n s not invertible, and so c is non-zero.
Hence, by definition of D, there is an reE(c) which is comparable with t, so C G P # .

If r < *, then c, tetR, and so 1 G?/?; if f ^ r, then c, te?R and so 1 e?R. In both
cases we have a contradiction to the definition of R.

LEMMA 3. The set D is a linearly ordered initial segment of T.

Proof. If /, we D then by Lemma 2, t + weM and hence t + w is not invertible.
It follows from the construction of R that t and w are comparable. Suppose that
v < /in T, and c is a non-zero element of M. Then there is r G £(C) which is comparable
with /. If t ^ r, then y < r. If r < f, then r and v are comparable since ? is linearly
ordered. Hence v e D.

LEMMA 4. M ^ DR.

Proof. Suppose there is an element c e M — DR; we can assume without loss that c
is a non-zero element of F[T]. Noelementf of D is in E(c); for otherwise celR £ DR,
using Lemma 3. Let tlt..., /fc be the distinct elements of E(c). Since none of these
is in D, there is, for each /(I ^ i ^ k), a non-zero element b-, of M such that for all
reEibJ, r is incomparable with tr Without loss we can suppose that bi€F[T].
Now F is an infinite field, so that we can choose scalars qlt ...,qke F in such a way
that in

x = c+q1bl+ ... +qkbk

no monomial which occurs with non-zero coefficient in c or some bt vanishes in x.
Suppose that weE(x). Then (by the choice of the numbers qs) there is some tj such
that tj ^ vv. But (for the same reason) there is some r e E(bj) such that r ^ w. Hence
tj and r are comparable, which contradicts the choice of bj.
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Now we prove the theorem.
Assume that every unique factorisation domain has a maximal ideal; we prove

Tree. Let (T, ^ ) be a tree, and let R be R(T, ^ ) . By assumption, R has a maximal
ideal M. By Lemmas 2 and 4, M = DR where D is defined as above. If D is not a
branch of T, then by Lemma 3 there is t e T such that t > r for all r e D. Then
M = DR c 1R, contradicting the maximality of M. Hence (T, <) has a branch D
as required.
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