Algebra I

Musterlösung 15

Endliche Körper

Sei p eine Primzahl.

90. Sei $L := \mathbb{F}_p(t)$ der Körper der rationalen Funktionen über \mathbb{F}_p in der Variablen t (d.h. der Quotientenkörper des Polynomrings $\mathbb{F}_p[t]$) und sei $K := \mathbb{F}_p(t^p)$.

Zeige: Das Polynom $X^p - t^p$ ist irreduzibel und inseparabel über K, und L ist sein Zerfällungskörper.

Lösung: Der Ring $\mathbb{F}_p[t^p]$ ist isomorph zum Polynomring $\mathbb{F}_p[Y]$ via eines Isomorphismus, der auf \mathbb{F}_p die Identität ist und Y auf t^p abbildet. Da Y ein irreduzibles Element im Hauptidealring $\mathbb{F}_p[Y]$ ist, ist auch $t^p \in \mathbb{F}_p[t^p]$ irreduzibel. Nach dem Eisenstein-Schönemann-Kriterium ist nun $X^p - t^p$ ein irreduzibles Polynom in $\mathbb{F}_p[t^p][X]$, also ist es nach dem Lemma von Gauss irreduzibel in $\mathbb{F}_p(t^p)[X] = K[X]$. über L gilt $X^p - t^p = (X - t)^p$, also hat das Polynom die p-fache Nullstelle t und ist somit, da es irreduzibel ist, nicht separabel. Da L = K(t) ist, ist L der Zerfällungskörper.

- **91.** Sei K ein Körper der Charakteristik p und sei $K \to K, x \mapsto x^p$ der Frobeniushomomorphismus.
 - (a) Zeige: Der Frobeniushomomorphismus ist injektiv.
 - (b) Zeige: Der Frobeniushomomorphismus ist genau dann surjektiv, wenn jedes Polynom in K[X] separabel ist.

Bemerkung: Ein Körper, über den jedes Polynom separabel ist, heisst perfekt.

Lösung: (a) Aus der Vorlesung wissen wir, dass der Frobeniushomomorphismus ein Körperhomomorphismus ist. Somit ist er injektiv.

(b) Wir nehmen zuerst an, der Frobeniushomomorphismus $K \to K$ sei surjektiv. Sei per Widerspruchsannahme $f \in K[X]$ inseparabel. Wir können o.B.d.A. annehmen, dass f irreduzibel ist. Wegen Insepabaribilität müssen f und f' mit Satz 16.1 einen gemeinsamen Teiler haben vom Grad ≥ 1 haben. Da f jedoch irreduzibel ist, folgt daraus, dass dieser Teiler gleich f ist. Dies impliziert aus Gradgründen f'=0. Folglich hat f die Form $f=\sum_{i=0}^n a_i X^{pi}$. Da der Frobeniushomomorphismus surjektiv ist, können wir $a_i=b_i^p$ mit $b_i\in K$ schreiben. Also ist $f=\sum_{i=0}^n b_i^p X^{pi}=(\sum_{i=0}^n b_i X^i)^p$ und folglich nicht irreduzibel.

Für die Gegenrichtung nehmen wir an, der Frobeniushomomorphismus $K \to K$ sei nicht surjektiv. Sei also $b \in K$ nicht im Bild des Frobeniushomomorphismus. Dann hat das Polynom $X^p - b \in K[X]$ keine Nullstelle, seine irreduziblen Faktoren haben somit mindestens Grad 2. Sei a eine Nullstelle in einem Zerfällungskörper. Dann gilt $X^p - b = (X - a)^p$ in K(a)[X], somit ist K(a) der Zerfällungskörper. Somit hat jeder irreduzible Faktor von $X^p - b \in K[X]$ die mehrfache Nullstelle a. Also haben wir ein nichtseparables Polynom gefunden und K ist nicht perfekt.

- **92.** Sei $q = p^n$ für eine positive ganze Zahl n.
 - (a) Zeige: Ein irreduzibles Polynom $f \in \mathbb{F}_p[X]$ teilt $X^q X$ in $\mathbb{F}_p[X]$ genau dann, wenn sein Grad ein Teiler von n ist.
 - (b) Sei I_d die Menge der normierten, irreduziblen Polynome vom Grad d in $\mathbb{F}_p[X]$. Beweise die Gleichung

$$X^q - X = \prod_{d|n} \prod_{f \in I_d} f.$$

- (c) Folgere daraus, dass $\sum_{d|n} (d \cdot |I_d|) = q$ gilt.
- (d) Bestimme die Anzahl der irreduziblen Polynome vom Grad 6, 7, 8 in $\mathbb{F}_2[X]$.

Lösung: (a) Jedes irreduzible Polynom über einem endlichen Körper ist separabel. Also ist f genau dann ein Teiler von $X^q - X$, wenn f und $X^q - X$ eine gemeinsame Nullstelle α in einem Zerfällungskörper von $X^q - X$ haben. Aber die Nullstellen von $X^q - X$ sind genau die Elemente des Körpers \mathbb{F}_q der Ordnung q. Für diese ist $[\mathbb{F}_p(\alpha) : \mathbb{F}_p]$ ein Teiler von $[\mathbb{F}_q : \mathbb{F}_p] = n$. Damit ist gezeigt, dass aus $f|X^q - X$ tatsächlich $\deg(f)|n$ folgt.

Nimm umgekehrt $\deg(f)|n$ an. Sei α eine Nullstelle von f in einem Zerfällungskörper von f. Dann ist $[\mathbb{F}_p(\alpha):\mathbb{F}_p]=\deg(f)$ und somit ist $\mathbb{F}_p(\alpha)$ der Zerfällungskörper von $X^{p^{\deg(f)}}-X$. Dies impliziert $\alpha^{p^{\deg(f)}}=\alpha$ und mit $\deg(f)|n$ folgt $\alpha^q=\alpha$.

- (b) Wegen (a) teilt die rechte Seite die linke, denn die f sind alle zueinander teilerfremd. Sei umgekehrt $a \in \mathbb{F}_q$ eine Nullstelle von $X^q X$. Sei m_{a,\mathbb{F}_p} das normierte Minimalpolynom von a über F_p . Dann gilt $m_{a,\mathbb{F}_p}|X^q X$ und $\deg(m_{a,\mathbb{F}_p}) \leq [\mathbb{F}_q:\mathbb{F}_p] = n$, also ist das Polynom auf der rechten Seite ein annullierendes Polynom für a und m_{a,\mathbb{F}_p} muss einer der Faktoren sein. Da $X^q X$ nur einfache Nullstellen hat, folgt die Aussage.
- (c) Vergleiche den Grad auf der rechten und linken Seite in (b).
- (d) Mit (c) gilt $2^6 = |I_1| + 2|I_2| + 3|I_3| + 6|I_6|$. Die irreduziblen Polynome von Grad 2 und 3 können wir schnell abzählen und wir finden $|I_6| = 9$.

Wieder gilt
$$2^7 = |I_1| + 7|I_7|$$
 und daher $|I_7| = \frac{128 - 2}{7} = 18$.
Es gilt $2^8 = |I_1| + 2|I_2| + 4|I_4| + 8|I_8|$, also $|I_8| = \frac{256 - 2 - 2 - 12}{8} = 30$.

93. Finde für $q=8,\,9,\,16$ das Minimalpolynom über \mathbb{F}_2 bzw. \mathbb{F}_3 eines Erzeugers von \mathbb{F}_q^* .

Lösung: Sei $p^r=8$. Dann ist \mathbb{F}_8 isomorph zu $\mathbb{F}_2[X]/(X^3+X+1)$, da X^3+X+1 ein irreduzibles Polynom vom Grad 3 über \mathbb{F}_2 ist. Ausserdem ist \mathbb{F}_8^* zyklisch der Ordnung 7, also ist jedes von 1 verschiedene Element ein Erzeugendes. Zum Beispiel können wir das Bild von X in $\mathbb{F}_2[X]/(X^3+X+1)$ als erzeugendes Element wählen. Sein Minimalpolynom ist natürlich X^3+X+1 .

Sei $p^r=9$. Dann ist \mathbb{F}_9 isomorph zu $\mathbb{F}_3[X]/(X^2+1)$, da X^2+1 ein irreduzibles Polynom vom Grad 2 über \mathbb{F}_3 ist. Eine \mathbb{F}_3 -Basis von \mathbb{F}_9 ist also $\{1,a\}$ mit $a^2=-1$. Da \mathbb{F}_9^* zyklisch der Ordnung 8 ist, suchen wir ein Element der Ordnung 8. Die Elemente der Ordnungen 1, 2 und 4 sind respektive 1, -1 und $\pm a$. Somit kann zum Beispiel a+1 nur noch die Ordnung 8 haben. (Wir können dies auch direkt nachrechnen vermittels $(a+1)^2=2a$ und $(a+1)^4=(2a)^2=-4=-1\neq 1$.) Wegen $(a+1)^2+(a+1)-1=0$ und $a+1\notin\mathbb{F}_3$ ist X^2+X-1 das Minimalpolynom von a+1 über \mathbb{F}_3 .

Sei $p^r = 16$. Das Polynom $X^4 + X + 1$ ist irreduzibel vom Grad 4 über \mathbb{F}_2 , folglich ist $\mathbb{F}_{16} = \mathbb{F}_2(a)$ für ein Element a mit Minimalpolynom $X^4 + X + 1$ über \mathbb{F}_2 . Da \mathbb{F}_{16}^* zyklisch der Ordnung $16 - 1 = 3 \cdot 5$ ist, ist schon a selbst ein Erzeuger, sofern nicht $a^3 = 1$ oder

 $a^5=1$ ist. In diesem Fall wäre a eine Nullstelle des Polynoms X^3-1 oder des Polynoms $X^5-1=(X-1)(X^4+X^3+X^2+X+1)$. Allerdings ist aus Gradgründen jedes dieser Polynome teilerfremd zum irreduziblen Polynom X^4+X+1 . Dies kann also nicht sein, und a ist ein Erzeuger von \mathbb{F}_{16}^* mit dem Minimalpolynom X^4+X+1 .

- **94.** (a) Zeige, dass das Polynom $f(X) = X^3 + 3X + 3$ irreduzibel in $\mathbb{F}_5[X]$ ist.
 - (b) Sei α eine Nullstelle von f in einem Zerfällungskörper von f. Sei $\mathbb{F}_{125} = \mathbb{F}_5(\alpha)$. Berechne die Darstellungsmatrix des Frobeniusautomorphismus $\operatorname{Frob}_5 \colon \mathbb{F}_{125} \to \mathbb{F}_{125}$ in der Basis $(1, \alpha, \alpha^2)$.
 - (c) Schreibe das Element $\beta:=1/(1-\alpha)\in \mathbb{F}_{125}$ als \mathbb{F}_5 -Linearkombination von $1,\alpha$ und α^2 .
 - (d) Zeige, dass α die zyklische Gruppe \mathbb{F}_{125}^* erzeugt.

Lösung: We denote elements of \mathbb{F}_5 just with integer numbers, so that 5=0.

- (a) Since the polynomial $f \in \mathbb{F}_5[X]$ has degree 3, every proper decomposition of f has a linear factor, which means that f is irreducible if and only if it has no root in \mathbb{F}_5 . Since f(0) = 3, f(1) = 2, f(2) = 2, f(3) = 4 and f(4) = 4, we obtain that f has no root in \mathbb{F}_5 , therefore it is irreducible in \mathbb{F}_5 .
- (b) Since α is a root of f, we have

$$\alpha^3 = -3\alpha - 3 = 2(\alpha + 1)$$
 and $(\alpha + 1)^3 = \alpha^3 + 3\alpha^2 + 3\alpha + 1 = 3(\alpha^2 + 1),$

which implies in particular that

$$\alpha^9 = -\alpha^2 - 1.$$

To compute the matrix of $\operatorname{Frob}_5: x \mapsto x^5$ with respect to the basis $(1, \alpha, \alpha^2)$, where α is a root of f, we write down the images of 1, α and α^2 as \mathbb{F}_5 -linear combinations of 1, α and α^2 . We get the following:

Frob₅(1) = 1
Frob₅(
$$\alpha$$
) = α ⁵ = α ² · 2 · (α + 1) = 2α ³ + 2α ² = $-1 - \alpha + 2\alpha$ ²
Frob₅(α ²) = α · α ⁹ = $-\alpha$ ³ - α = $-2 + 2\alpha$

Then the matrix associated to Frob₅ with respect to the basis $(1, \alpha, \alpha^2)$ is

$$M_{\text{Frob}_5} = \left(\begin{array}{ccc} 1 & -1 & -2 \\ 0 & -1 & 2 \\ 0 & 2 & 0 \end{array}\right).$$

(c) Suppose that $\beta = \lambda + \mu \alpha + \nu \alpha^2$ for $\lambda, \mu, \nu \in \mathbb{F}_5$. Then the condition $1 = \beta(1 - \alpha)$ gives

$$1 = \lambda + (\mu - \lambda)\alpha + (\nu - \mu)\alpha^2 - \nu\alpha^3 = \lambda + 3\nu + (3\nu + \mu - \lambda)\alpha + (\nu - \mu)\alpha^2,$$

which is equivalent to

$$\begin{cases} \lambda + 3\nu = 1 \\ 3\nu + \mu - \lambda = 0 \\ \nu - \mu = 0. \end{cases}$$

Solving the equations backwards we obtain $\mu = \nu$, $\lambda = 4\nu$ and $7\nu = 1$, so that the unique solution is $(\lambda, \mu, \nu) = (2, 3, 3)$, and $\beta = 2 + 3\alpha + 3\alpha^2$.

(d) The group \mathbb{F}^*_{125} is cyclic of order $124=4\cdot 31$, and by Lagrange's theorem applied to the subgroup $\langle \alpha \rangle$ we see that the order of α is a divisor of 124. We want to prove that indeed $\operatorname{ord}_{\mathbb{F}^*_{125}}(\alpha)=124$, and this can be done by checking that α^4 and α^{62} both differ from 1, since every proper divisor of 124 divides either 4 or 62. Of course, $\alpha^4=2(\alpha^2+\alpha)\neq 1$, so that we are left to check that $\alpha^{62}\neq 1$. We have

$$\alpha^{62} = \alpha^{-1}(\alpha^9)^7 = -\alpha^{-1}(\alpha^2 + 1)^7.$$

To proceed with the computation, notice that

$$\begin{split} &(\alpha^2+1)^3 = \alpha^6 + 3\alpha^4 + 3\alpha^2 + 1 = 4(\alpha+1)^2 + \alpha^2 + \alpha + 3\alpha^2 + 1 = 3\alpha^2 - \alpha, \\ &(\alpha^2+1)^6 = (3\alpha^2 - \alpha)^2 = -\alpha^4 - \alpha^3 + \alpha^2 = -\alpha^2 + \alpha - 2 \text{ and} \\ &(\alpha^2+1)^7 = (-\alpha^2 + \alpha - 2)(\alpha^2+1) = -\alpha^4 - \alpha^2 + \alpha^3 + \alpha - 2\alpha^2 - 2 = \alpha. \end{split}$$

Then

$$\alpha^{62} = -\alpha^{-1}\alpha = -1 \neq 1,$$

and we can conclude that α generates \mathbb{F}_{125}^* .