Algebra I

D-MATH

Musterlösung 16

Einheitswurzeln, algebraischer Abschluss

Sei p eine Primzahl.

- **95.** Sei K ein Körper der Charakteristik 0 oder p > 0. Sei $n \in \mathbb{N}$. Falls $\operatorname{char}(K) = p$ nehmen wir an, dass $p \nmid n$ gilt.
 - (a) Zeige: Es gibt genau n paarweise verschiedene n-te Einheitswurzeln.
 - (b) Zeige: Die n-ten Einheitswurzeln bilden eine zyklische Untergruppe von (K^*, \cdot) . Bemerkung: Die Erzeuger dieser Gruppe heissen primitive n-te Einheitswurzeln.
 - (c) Sei $\varphi(n) := |\{m \in \mathbb{N} : m \le n, \, \operatorname{ggT}(m, n) = 1\}|$ die Eulersche φ -Funktion. Zeige: Die Anzahl der primitiven n-ten Einheitswurzeln ist $\varphi(n)$.

Lösung: (a) Wir müssen zeigen, dass das Polynom X^n-1 keine mehrfachen Nullstellen hat. Laut Vorlesung ist das äquivalent dazu, dass es teilerfremd zu seiner Ableitung nX^{n-1} ist. Da die Charakteristik von K kein Teiler von n ist, verschwindet die Ableitung nicht, sondern ihre einziger irreduzibler Teiler ist, bis auf Assoziiertheit, X. Allerdings teilt X das Polynom X^n-1 nicht, somit sind wir fertig.

- (b) Offensichtlich handelt es sich um eine zyklische Untergruppe von (K^*, \cdot) . Dass sie zyklisch ist, folgt verbatim nach der Lösung der Aufgabe 54, wobei \mathbb{F}^* durch die Menge der n-ten Einheitswurzeln ersetzt wird.
- (c) Gesucht ist also die Anzahl der Erzeuger der zyklischen Gruppe $\mathbb{Z}/n\mathbb{Z}$. Aus der Algebra I wissen wir, dass diese gleich $\varphi(n)$ ist. Siehe dazu auch Aufgabe 51.
- **96.** Sei K ein Körper. Zeige: Die folgenden beiden Aussagen sind äquivalent.
 - i. Der Körper K ist algebraisch abgeschlossen.
 - ii. Es existiert ein Unterkörper $K_0 \subset K$, sodass die Erweiterung $K: K_0$ algebraisch ist und jedes Polynom in $K_0[X]$ über K zerfällt.

Lösung: Die Richtung i. \Rightarrow ii. folgt mit $K_0 := K$.

Für die andere Richtung, sei $f \in K[X]$ irreduzibel. Sei α eine Nullstelle von f in einem Zerfällungskörper von f. Dann ist α algebraisch über K, also auch über K_0 , und hat folglich ein Minimalpolynom g über K_0 . Nach dem Euklidischen Algorithmus gibt es Polynome $q,r\in K[X]$ mit g=qf+r und $\deg(r)<\deg(f)$ oder r=0. An α ausgewertet sehen wir, dass r ein annullierendes Polynom für α sein muss. Da f aber minimalen Grad hat, impliziert das r=0. Somit teilt f das Polynom g. Nach Voraussetzung zerfällt $g\in K_0[X]$ über K in Linearfaktoren. Dann muss aber auch f zerfallen. Somit ist K algebraisch abgeschlossen.

97. Sei L:K eine beliebige Körpererweiterung. Die Menge \tilde{K} aller über K algebraischen Elemente von L heisst der (relative) algebraische Abschluss von <math>K in L. Zeige:

- (a) \tilde{K} ist der eindeutige grösste Zwischenkörper von L:K, der algebraisch über K ist.
- (b) Ist L algebraisch abgeschlossen, so ist \tilde{K} ein algebraischer Abschluss von K im Sinne der Vorlesung.
- (c) Gilt die Folgerung in (b) auch im Fall $\mathbb{R} : \mathbb{Q}$?
- (d) Seien $\overline{\mathbb{Q}}$ der algebraische Abschluss von \mathbb{Q} in \mathbb{C} , und $\overline{\mathbb{Q}}^+$ der algebraische Abschluss von \mathbb{Q} in \mathbb{R} . Zeige $[\overline{\mathbb{Q}}:\overline{\mathbb{Q}}^+]=2$.

Lösung: (a) Gemäss Vorlesung liegen Summe, Differenz, Produkt und (sofern definiert) Quotient zweier Elemente aus \tilde{K} in \tilde{K} , also ist \tilde{K} ein Zwischenkörper der Erweiterung L:K. Die Körpererweiterung $\tilde{K}:K$ ist nach Konstruktion algebraisch, denn jedes Element aus \tilde{K} ist algebraisch über K. Weiters ist jedes Element aus $L\setminus \tilde{K}$ transzendent über K, weshalb jeder echte Oberkörper von \tilde{K} in L transzendente Elemente enthält. Somit ist \tilde{K} der eindeutige grösste über K algebraische Zwischenkörper von L:K.

- (b) Sei $f \in K[X]$ ein nichtkonstantes Polynom. Da L algebraisch abgeschlossen ist, hat f eine Nullstelle a in L. Als Nullstelle von f ist a algebraisch über K und liegt deshalb in \tilde{K} . Somit hat jedes nichtkonstante Polynom in K[X] eine Nullstelle in \tilde{K} . Weiters ist die Körpererweiterung $\tilde{K}:K$ gemäss (a) algebraisch. Also ist \tilde{K} ein algebraischer Abschluss von K.
- (c) Das Polynom $X^2+1\in\mathbb{Q}[X]$ hat keine Nullstelle in \mathbb{R} , also ist $\tilde{\mathbb{Q}}\subset\mathbb{R}$ nicht algebraisch abgeschlossen und somit kein algebraischer Abschluss von \mathbb{Q} .
- (d) Nach Konstruktion ist

$$\overline{\mathbb{Q}}^+ = \{x \in \mathbb{R} : x \text{ algebraisch "uber } \mathbb{Q}\} = \overline{\mathbb{Q}} \cap \mathbb{R}.$$

Wegen (c) gilt $i \in \overline{\mathbb{Q}} \setminus \overline{\mathbb{Q}}^+$, insbesondere ist $\overline{\mathbb{Q}}^+ \neq \overline{\mathbb{Q}}$. Betrachte nun ein beliebiges $z \in \overline{\mathbb{Q}}$. Dann ist \overline{z} eine weitere Nullstelle des Minimalpolynoms von z über \mathbb{Q} und liegt daher ebenfalls in $\overline{\mathbb{Q}}$. Somit liegen auch $\mathrm{Re}(z) = (z + \overline{z})/2$ und $\mathrm{Im}(z) = (z - \overline{z})/2i$ in $\overline{\mathbb{Q}}$. Da sie ausserdem reell sind, liegen sie folglich in $\overline{\mathbb{Q}}^+$. Wegen $z = \mathrm{Re}(z) + i \, \mathrm{Im}(z)$ ist die Menge $\{1,i\}$ also eine $\overline{\mathbb{Q}}^+$ -Basis von $\overline{\mathbb{Q}}$. Es folgt $[\overline{\mathbb{Q}}:\overline{\mathbb{Q}}^+] = 2$.

98. Zeige, dass endliche Körper nicht algebraisch abgeschlossen sind.

Lösung: Es gibt viele verschiedene Beweise dafür.

Variante 1: Wir orientieren uns an Euklids Beweis für die Existenz unendlich vieler Primzahlen: Sei $\mathbb F$ ein endlicher Körper. Dann ist

$$f(X) \;:=\; 1 + \prod_{a \in \mathbb{F}} (X-a) \;\in\; \mathbb{F}[X]$$

ein wohldefiniertes normiertes Polynom über K. Nach Konstruktion gilt f(a)=1 für alle $a\in \mathbb{F}$, also hat f keine Nullstelle in \mathbb{F} . Dies zeigt, dass \mathbb{F} nicht algebraisch abgeschlossen ist.

Variante 2: Sei $\mathbb F$ ein endlicher Körper der Ordnung q. Wähle eine zu q teilerfremde natürliche Zahl n>q, zum Beispiel n=q+1. Betrachte das Polynom $f(X):=X^n-1$. Dann ist $f'(X)=nX^{n-1}$ ungleich 0 und teilerfremd zu f(X). Folglich ist f separabel, also haben alle seine Nullstellen die Multiplizität 1. Aber f hat Grad n und höchstens q Nullstellen in $\mathbb F$; deshalb kann es nicht über $\mathbb F$ in Linearfaktoren zerfallen. Folglich ist $\mathbb F$ nicht algebraisch abgeschlossen.

99. Sei $\overline{\mathbb{F}_p}$ ein algebraischer Abschluss von \mathbb{F}_p . Sei $n \geq 1$ eine natürliche Zahl.

Wie viele Unterkörper der Kardinalität p^n enthält $\overline{\mathbb{F}_p}$?

Lösung: Seien $K, L \subset \overline{\mathbb{F}_p}$ zwei Körper der Kardinalität p^n . Beide Körper sind laut Vorlesung Zerfällungskörper von $X^{p^n}-X$, und jedes ihrer Elemente ist Nullstelle dieses Polynoms. Da dieses Polynom in $\overline{\mathbb{F}_p}[X]$ nur p^n Nullstellen hat, müssen K und L somit dieselben Elemente haben. Sie sind also gleich.