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Abstract. Many algebraic number rings exhibit nonunique factorization of elements into irre-
ducibles. Not only can the irreducibles in the factorizations be different, but the number of
irreducibles in the factorizations can also vary. A basic question then is: Which sets can occur
as the set of factorization lengths of an element? Moreover, how often can each factorization
length occur? While these questions are most pertinent in algebraic number rings, their per-
tinence extends to Dedekind domains and a broader class of structures called Krull monoids.
Surprisingly, for a large subclass of Krull monoids, Kainrath was able to resolve completely
the question of which length sets and length multiplicities can be realized. In this article, we
explain the context of Kainrath’s theorem and give a constructive proof for an important case,
namely Krull monoids with infinite nontorsion class group. We also construct length sets in a
case not covered by Kainrath’s theorem to illustrate the difficulty of the general problem.

1. INTRODUCTION. Undergraduates learn in abstract algebra and number theory
courses that extensions of the integers, such as the classic Z

[√−5
]
, have nonunique

factorization. These courses expend quite some effort to verify that the ubiquitous
equation 6 = 2 · 3 = (1+√−5

) (
1−√−5

)
actually portrays two distinct factoriza-

tions of the same element. Properly verifying this claim involves norms, determining
units, checking for associates, etc. Yet, after laying all that groundwork, many books
terminate their exploration of nonunique factorization with this one example, content
that a single equation has conveyed enough of the “problem” of nonunique factoriza-
tion. The simplicity of this equation, though, can give a false impression to undergrad-
uates. Students may look at the equation 6 = 2 · 3 = (1+√−5

) (
1−√−5

)
and not

be much perturbed: two “atoms” have recombined to become two other “atoms,” but
the “mass” has been conserved. Yet, nonunique factorization poses a far more compli-
cated and intriguing obstacle than this example presents.

The standard testing ground, Z
[√−5

]
turns out to be a rather tame and well-

behaved ring with regard to nonunique factorization: For any element x ∈ Z[
√−5],

all its factorizations have the same number of irreducibles (counting multiplic-
ity). This property is known as half-factoriality. For example, 18 has three dis-
tinct factorizations into irreducibles: 2 · 3 · 3; 3 · (1+√−5

) · (1−√−5
)
; and

2 · (2+√−5
) (

2−√−5
)
, yet all these factorizations have three irreducibles. Thus,

in a half-factorial ring, the factorizations of an element may not be unique, but the
factorization lengths are. This is precisely the conservation of mass notion from above.

In more complicated algebraic number rings, we can find elements that have factor-

izations of different lengths. For example, in Z
[

1+√−23
2

]
, we have

18 =
(

7+√−23

2

)(
7−√−23

2

)
= 3

(
1+√−23

2

)(
1−√−23

2

)
.
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The element 18 thus factors as a product of two atoms and as a product of three atoms;
mass has not been preserved! We can say that 18 has two factorization lengths, 2 and
3, which we can collect into the set of lengths of 18, denoted L(18) = {2, 3}. If we
consider 324 = 182, then any pair of factorizations of 18 will produce a factorization
of 324. Considering all possible pairs, we obtain factorizations of length 4, 5, and 6 for
324. These turn out to be the only factorization lengths of 324, so L(324) = {4, 5, 6}.
Taking larger and larger powers of 18 (or any element with at least two factorization
lengths), we obtain elements with larger and larger sets of lengths. One can show
in general that L(18k) is precisely {2k, 2k + 1, . . . , 3k − 1, 3k}, an interval. Based on
these computations, one might wonder if length sets are always intervals or whether an
element factors as, say, a product of four irreducibles and a product of six irreducibles

but not five irreducibles. For Z
[

1+√−23
2

]
, the length sets turn out to be intervals, but

in other algebraic rings, length sets can have gaps. This begs the question, which sets
occurs as length sets? More precisely, we have two questions, depending on where we
are allowed to look.

Question 1. If you have a set L , does there exist an algebraic number ring R and an
element x ∈ R such that L(x) = L?

Question 2. If you fix an algebraic number ring R, which sets L occur as L(x) for
x ∈ R?

The factorization lengths are one aspect, but one can also consider how frequently
they appear. In Z

[√−5
]
, the element 6 had two distinct factorizations of length 2. Is

there an element of that ring with three distinct factorizations of length 2? We are now
specifying the multiplicity of different factorization lengths, a more intricate problem
than specifying just the length set. For example, could there be an algebraic number
ring R that has an element with one million factorizations of length 2 and no other
factorizations? What would such a ring look like? These questions about length, mul-
tiplicities, and the connection to the ring structure are some of the central questions
explored in the theory of nonunique factorization.

The astute reader may have noticed a pattern among our examples: Z
[√−5

]
and

Z
[

1+√−23
2

]
are the first imaginary quadratic number rings with class numbers 2 and

3, respectively. As it turns out, the larger the class group, the worse the nonuniqueness
of factorization in the ring; this is a discovery that stymied Lamé’s attempt to prove
Fermat’s last theorem [12]. A well-known result says that an algebraic number ring has
unique factorization if and only if its class group is trivial. A slightly less well-known
result by Carlitz [7] proved that an algebraic number ring is half-factorial if and only if
its class number is less than or equal to 2. In general, questions about length sets can be
translated cleanly into corresponding questions about the class group and, with care,
questions about multiplicities can also be translated (see Sections 2 and 4). Factoriza-
tion theory for algebraic number rings corresponds heavily to additive combinatorics
within the class group and that combinatorics restricts the possible behavior for factor-
ization. For example, one can show that a combinatorial constant known as the Dav-
enport constant D(G) plays an outsize role in the structure of length sets. Specifically,
if an algebraic number ring R has class group G with |G| ≥ 2 and L is the length set
of some nonzero, nonunit x ∈ R, then we must have max L/ min L ≤ D(G)/2, and
this bound is sharp. We recommend the expository article [5] to interested readers; it
describes the role of the Davenport constant and the class group in the factorization
of algebraic number rings. Two recent articles [15, 21] present the state of the art for
determining the length sets of algebraic number rings and more general contexts.
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While the theory of nonunique factorization grew out of algebraic number rings,
its focus today is quite broad, due to the connections between factorization problems
and other areas of mathematics, such as additive combinatorics, commutative alge-
bra, and, recently, invariant theory [11]. The “classic” part of the theory has expanded
from algebraic number rings, to Dedekind domains, and finally to a class of structures
known as Krull monoids. Krull monoids, like algebraic number rings, have an associ-
ated abelian group called the class group, and these monoids provide the most general
setting where the class group has full control over factorization properties. This con-
nection between factorization and the class group is what makes this theory “classic”
(excuse the pun), and Section 4 describes the connection in detail. The present article
intends to highlight some of the surprisingly rich factorization theory in these general
settings of Dedekind domains and Krull monoids, which have connections beyond
number theory. Algebraic number rings, naturally, are also important, but they have
been covered in detail in [5].

Unlike algebraic number rings, Dedekind domains and Krull monoids can have
infinite class groups. In fact, every abelian group G occurs as the class group of some
Dedekind domain [10]. Examples of Krull monoids with infinite class group naturally
occur in number theory and module theory (see Section 4). While the questions we
have asked about length sets and multiplicities remain a highly active area of research
for algebraic number rings, for many Krull monoids with infinite class group the ques-
tion was fully resolved in 1999 by Kainrath’s theorem.

Kainrath’s Theorem. Let H be a Krull monoid with infinite class group G and
primes in every divisor class. Then every finite subset L of N≥2 occurs as the length
set of some x ∈ H.
Furthermore, barring G of a certain form, we can prescribe multiplicities. For every
� ∈ L, specify a multiplicity m� ≥ 1. We can find an x ∈ H with precisely m� factor-
izations of length � for each � ∈ L and no other factorizations.

Kainrath’s theorem says that every length set and length multiplicity can be realized
in a Krull monoid with infinite class group and primes in every divisor class. This is in
stark contrast to algebraic number rings, where we have many restrictions, including
the previously mentioned bound on max L/ min L . In fact, Kainrath’s theorem is one
of only two known contexts where all length sets and length multiplicities can be
achieved. The second context was discovered by Frisch [14] in 2013, who showed that
the ring of integer-valued polynomials Int(Z) = { f (x) ∈ Q[x] | ∀n ∈ Z f (n) ∈ Z}
has all possible length sets and multiplicities. Notably, this ring is not Krull.

Kainrath’s theorem is impressively general. For length sets, it covers Krull monoids
with any infinite abelian group as its class group. For multiplicities, there is only one
class of exceptions, namely finite extensions of an infinite elementary 2-group. In that
case, the truth of theorem is not known, though partial results have been obtained [16,
Section 7.4]. Despite the generality of Kainrath’s theorem, it can be improved along
two lines. First, Kainrath’s theorem was nonconstructive. We know that elements with
a prescribed length set and multiplicities exist, but we do not have a systematic way of
finding them. Second, the theorem assumes there are primes in every divisor class. The
technical details of this assumption are explained in Section 4, but suffice it to say that
this hypothesis does not always occur and removing this hypothesis is the far greater
obstacle to improving Kainrath’s theorem.

In this paper, we shall prove a special case of Kainrath’s theorem and discuss the
issues surrounding generalizations of the theorem. In Section 2, we introduce block
monoids, an important family of Krull monoids that are at the heart of factorization
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theory arguments for all Krull monoids. Section 3 gives an elementary, constructive
proof of Kainrath’s theorem for B(Z), the block monoid over Z. We illustrate the gen-
eral algorithm and work through an extended example. In Section 4, we give a gentle
introduction to Krull monoids and reveal the correspondence between Krull monoids
and block monoids. This correspondence will allow us to extend our constructive proof
of Kainrath’s theorem from the block monoid B(Z) to all Krull monoids with an infi-
nite nontorsion class group and primes in every class. While this may seem like an
overly restrictive choice of class group, many of the known examples from number the-
ory and module theory have class group G ∼= Z. After this discussion of constructibil-
ity, we shift our focus to removing the assumption of “primes in every class.” Our
final section gives a taste of the difficulties of this open problem by working out a
particularly nice class of examples in Section 5.

2. BLOCK MONOIDS AND BASIC FACTORIZATION THEORY. In this sec-
tion, we formalize some of the intuition given in the introduction. The modern def-
initions for factorization theory have been couched in the world of monoids rather
than rings. Whenever we talk about factorization in a ring R, we are only referring to
the monoid R• = R\{0} of nonzero elements under multiplication. Addition plays
a peripheral role; concepts such as ideals, which ostensibly refer to addition, can
be developed from the multiplicative structure. On the other hand, many important
monoids with factorization theories, such as the block monoids we define below, can-
not be obtained as the multiplicative monoid of a ring. Therefore, we need the added
expressive power of the monoidal definitions to cover these essential cases. A full
description of these nuances can be found in [16]. Despite the setting of monoids, the
reader will find many of the basic definitions familiar from ring theory.

Let H be a commutative monoid with cancellation. An element u ∈ H is a unit
if there is v ∈ H such that uv = 1. The set of units will be denoted H×. If x ∈ H
and u ∈ H× is a unit, then the element ux is an associate of x . A nonunit x ∈ H is
irreducible if, whenever x = yz for some y, z ∈ H , we have that y or z is a unit. We
will denote the set of irreducibles by A(H). A nonunit x ∈ H is prime if whenever
x | yz for some y, z ∈ H , then x | y or x | z. As usual, all primes are irreducible
but not vice versa. A monoid H is atomic if every nonunit of H can be written as a
product of irreducibles. Most familiar rings and monoids are atomic; for example, any
Noetherian domain is atomic, as is any finitely generated monoid.

In general monoids and rings, elements do not have to factor uniquely as a product
of irreducibles. We wish to measure this nonuniqueness. Let x ∈ H be a nonunit. If
x = a1 · · · an is a factorization of x into irreducibles, we say n is the length of the
factorization. We collect the factorization lengths together as the set of lengths of x :

L(x) = {n ∈ N | ∃a1, . . . , an ∈ A(H) such that x = a1 · · · an}.

Two factorizations a1 · · · an = x = b1 · · · bm of x are essentially the same if n = m
and, after reordering, ai is an associate of bi for all i . Otherwise, the factorizations are
essentially distinct. A monoid H has unique factorization if, for any nonunit x ∈ H ,
all factorizations of x are essentially the same. A weaker condition, that |L(x)| = 1 for
all nonunits x ∈ H , is called half-factoriality. We mentioned in the introduction that
Z
[√−5

]
is half-factorial but not factorial.

A few values of length sets are immediate from the definition. If x ∈ H
is a unit, then L(x) = {0}. If x is irreducible, then L(x) = {1}. Otherwise,
L(x) ⊆ N≥2 = {n ∈ N | n ≥ 2}. In general, length sets can be infinite, but for Krull
monoids, the focus of this article, they will always be finite.
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We are not only interested in counting the lengths of factorizations but also the
number of factorizations of each length. For each atomic monoid H , we have the
length multiplicity function μ : H × N→ N ∪ {∞}, where, for each x ∈ H and
n ≥ 0, we have μ(x, n) = m if x has exactly m essentially distinct factorizations of
length n. We can make several immediate conclusions about the multiplicity function
from the definition. If x is a unit, then μ(x, n) = 0 for all n ≥ 1, but μ(x, 0) = 1. If x
is an irreducible, then μ(x, 1) = 1, and for all n �= 1, we have μ(x, n) = 0. Lastly, if
x is a reducible nonunit, then μ(x, 0) = μ(x, 1) = 0 and μ(x, n) ≥ 1 for at least one
n > 1. For all Krull monoids H and all x ∈ H , μ(x, n) is nonzero for only finitely
many values of n and μ(x, n) is never∞.

The reducible elements of H have the interesting length sets and multiplicity func-
tions. We wish to determine which ones are possible. The extreme cases are that every
set or function is possible; we give these cases a name.

Definition. An atomic monoid H is length-set complete if, for every nonempty finite
subset L ⊂ N≥2, there is an x ∈ H with L(x) = L . The atomic monoid H is length-
multiplicity complete if, for every function f : N≥2 → N with finite nonempty sup-
port, there is an x ∈ H with μ(x, n) = f (n) for all n ≥ 2.

In other words, H is length-set complete if, for any finite set L of possible factoriza-
tion lengths, we can find an element x whose factorization lengths are precisely those
in L . The monoid is length-multiplicity complete if we can also prescribe how many
factorizations there are of each length. Clearly, length-multiplicity complete implies
length-set complete. Kainrath’s theorem can now be rephrased using this language.

Kainrath’s Theorem. Let H be a Krull monoid with infinite class group G and
primes in every class. Then H is length-set complete. Furthermore, if G is not a finite
extension of an elementary 2-group, then H is also length-multiplicity complete.

At the center of all our arguments will be a class of monoids called block monoids.
Block monoids are a particularly accessible example of Krull monoids, but as we will
see in Section 4, they are also essential for the study of general Krull monoids. The
idea of a block monoid derives from the notion of a zero-sum sequence from additive
number theory.

Given an abelian group G, we can construct the free abelian monoid F(G) over
G. Per convention, we will write G additively and F(G) multiplicatively. A typical
element A of F(G) will be a formal product of elements of G. Thus, we can write
A in the form A = ge1

1 ge2
2 · · · gen

n for some distinct gi ∈ G and ei ≥ 0. The elements
of F(G) are called sequences over G. The term “sequence” here is a bit of a mis-
nomer since F(G) is abelian, and so the order of the terms does not matter. “Word”
or “multiset” would be technically more accurate, but “sequence” remains the popular
convention.

We have an evaluation function σ : F(G)→ G that takes each formal sequence
and combines the terms using the group operation. Specifically, for A = ge1

1 ge2
2 · · · gen

n ,
we have

σ(A) := e1g1 + e2g2 + · · · + engn.

The kernel of this evaluation map σ is precisely the block monoid over G. Specifically,
the block monoid over G is the monoid
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B(G) =
⎧⎨
⎩x =

∏
g∈G

gvg ∈ F(G)

∣∣∣∣∣∣
∑
g∈G

vgg = 0

⎫⎬
⎭ .

The elements of B(G) are known as zero-sum sequences or blocks. The idea of a
zero-sum sequence has had a long history in the field of additive number theory [18].

For example, if G = Z/4Z, the integers modulo 4, then

B(Z/4Z) = {0v01v12v23v3 | v0 · 0+ v1 · 1+ v2 · 2+ v3 · 3 ≡ 0 mod 4}.

The sequence 02132131 is in B(Z/4Z) since 2 · 0+ 3 · 1+ 2+ 3 ≡ 0 mod 4, but the
sequence 01142132 is not a block since 1 · 0+ 4 · 1+ 2+ 2 · 3 �≡ 0 mod 4.

We can relativize these concepts to any subset G0 of G. Specifically, we will con-
sider F(G0) ≤ F(G), the free abelian monoid generated by G0. The block monoid
over G0, denoted B(G0, G) (or simply B(G0) if the ambient group G is understood),
consists of all zero-sum sequences in F(G0). Thus, B(G0) = F(G0) ∩ B(G).

We can develop a theory of factorization in block monoids. If A, C ∈ F(G0), we
say A divides C , written A | C , if there exists B ∈ F(G0) such that AB = C . Note
that if AB = C and A and C are both in B(G0), then B will also be in B(G0) since
σ(C) = σ(A)+ σ(B). Thus, if elements of B(G0) divide each other in F(G0), they
already do so in B(G0); we say that B(G0) is saturated in F(G0). This fact will be
used frequently when we factor blocks into products of other blocks.

Now we can implement the general definitions of factorization theory for block
monoids. A block A ∈ B(G0) is irreducible if A cannot be written as BC , the product
of two nontrivial blocks B, C ∈ B(G0). For example, in B(Z/4Z), the irreducible
blocks are exactly [0], [14], [22], [34], [1 · 3], [12 · 2], and [2 · 32]. The irreducible [0]
is prime, but all the other irreducibles are not. The block monoid B(G0) is atomic, but
in general, factorization is not unique. For example, in B(Z/4Z), the block A = 142234

has a total of five factorizations:

length 3: [14][22][34], [12 · 2]2[34], [32 · 2]2[14],
length 4: [12 · 2][32 · 2][1 · 3]2,

length 5: [1 · 3]4[22].

Thus, the length set of A is L(A) = {3, 4, 5} and the length multiplicities of A are
μ(A, 3) = 3, μ(A, 4) = μ(A, 5) = 1, and μ(A, n) = 0 for all other n.

3. CONSTRUCTION FOR Z. Kainrath’s theorem applies to the block monoid
B(Z), and in this section, we will give a constructive proof of this particular case.
Specifically, we will show that B(Z) is length-multiplicity complete (and hence
length-set complete) by constructing blocks with a given length multiplicity func-
tion. As an immediate consequence, we will have that for any infinite abelian group
G, B(G) is constructively length-set complete and length-multiplicity complete if we
can find some g ∈ G of infinite order.

So far we have been using the standard notation for block monoids over an arbi-
trary group. However, we will have to make a slight notational adjustment when work-
ing over Z. Here, we have a genuine ambiguity in the use of exponents as an arith-
metic operation and as a count of repeated terms in a sequence. For example, if we
write 24 ∈ F(Z), it is ambiguous whether we mean a sequence with one term, 16,
or a sequence with four terms, all of them 2. To disambiguate, we will reserve the
unadorned exponent for the arithmetic operation and use brackets [] in the exponent
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for counting repeated terms in a sequence. Thus, 24 ∈ F(Z) will denote a sequence
with one term, but 2[4] ∈ F(Z) denotes a sequence of four repeated 2’s.

One major advantage of having an ordered group like Z is that we can canonically
split the terms of a block. If B ∈ B(Z), then we may write out B as

B = a[e1]
1 a[e2]

2 · · · a[en ]
n 0[g](−b1)

[ f1](−b2)
[ f2] · · · (−bm)[ fm ].

The positive part of B is B+ = a[e1]
1 a[e2]

2 · · · a[en ]
n , while the negative part of B is

B− = b[ f1]
1 b[ f2]

2 · · · b[ fm ]
m . Note that the signs have been stripped from the negative

terms, and thus, we can reconstruct B as B = B+0g(−B−). Splitting B into positive
part and negative part also gives us a natural way of weighing B.

Definition. If B ∈ B(Z), then the weight of B is defined to be w(B) = σ(B+), the
sum of the positive terms of B. Since B is zero-sum, we also have w(B) = σ(B−), the
absolute value of the sum of the negative terms of B. In symbols, if

B = a[e1]
1 a[e2]

2 · · · a[en ]
n 0[g](−b1)

[ f1](−b2)
[ f2] · · · (−bm)[ fm ],

then w(B) =
n∑

i=1

ekak =
m∑

i=1

fi bi .

For example, if B = 1[5]3(−4)(−2)[2], then w(B) = 5 · 1+ 3 = 4+ 2 · 2 = 8. The
weight function is clearly additive: If B = A1 A2, then w(B) = w(A1)+ w(A2). The
definition of weight intentionally ignores the 0’s in B because we will only care about
blocks that are zero-free, i.e., which do not have 0 as a term. Every block B ∈ B(Z)

can be written uniquely as B = [0]g B ′, where B ′ ∈ B(Z) and B ′ is zero-free. Since
[0] is prime in B(Z), any factorization of B consists of a factorization of B ′ with
[0]g appended. Hence, the length set of B is just a shift by g of the length set of
B ′, i.e., L(B) = g + L(B ′), and the length multiplicity functions satisfy the similar
relation μ(B ′, n) = μ(B, n + g) for all n ≥ 0. Thus, understanding the factorizations
of elements of B(Z) reduces to understanding the factorizations of zero-free blocks.

Zero-free blocks work nicely with the weight function. If B is zero-free and A|B,
then w(A) = w(B) if and only if A = B. If B is zero-free and has only one positive
or one negative term, then B is irreducible and w(B) equals the absolute value of that
term. By contrapositive, if B is zero-free and reducible, then w(B) > |a| for each term
a of B.

Our constructive proof for B(Z) relies on two lemmas, the shifting lemma and the
augmenting lemma. The shifting lemma will allow us to increment all the lengths by
1, while the augmenting lemma will modify the multiplicities; used together, we will
be able to construct any length-multiplicity function we desire. The shifting lemma
works with very few assumptions, and so it will also be useful to us in Section 5.
However, the augmenting lemma needs more hypotheses: as inputs, we will need zero-
free sequences with a particular, but common, form.

Definition. Let B ∈ B(Z) be zero-free. Then B is nice if there are not a ∈ B+ and
b ∈ B− such that w(B) = a + b.

For example, the blocks 3[2](−2)(−4) and 1[5]3(−2)(−6) are nice, but the block
C = 2[2]6(−1)(−2)(−3)(−4) is not nice since 6 + 4 = 10 = w(C). Most blocks
are nice. Indeed, if a block B were not nice because a ∈ B+ and b ∈ B− satisfy
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w(B) = a + b, then, since w(B) = σ(B+) by definition, we must have b = σ(B+)−
a, the sum of all the positive terms save a. By symmetry, a = σ(B−)− b, the absolute
value of the sum of all the negative terms save b. Niceness failed in our example C
because 4 = 2+ 2 (and, by symmetry, 6 = 1+ 2+ 3). As we shall see, maintaining
niceness will pose little trouble.

Our first lemma, the shifting lemma, takes a block B and creates a new block C ,
which increases the lengths of all factorizations by exactly 1, while maintaining the
relative multiplicities. This can be achieved quickly if we multiply B by the prime
element [0] to get C = [0]B. However, we cannot use this quick solution, since we
will also be using the augmenting lemma, which requires zero-free sequences. Instead,
we have the zero-free solution below, which is still rather elementary.

Lemma 1 (Shifting Lemma). Suppose B ∈ B(Z) is zero-free with at least two pos-
itive and two negative elements. Then we can construct a nice, zero-free, reducible
block C from B such that μ(C, 0) = μ(C, 1) = 0 and μ(C, n + 1) = μ(B, n) for all
n ≥ 1. Explicitly, for any t ∈ N with t > w(B), we can choose C to be B · t · (−t).

Proof. Let B be zero-free with at least two positive and two negative elements.
Choose t ∈ N such that t > w(B) and set C = B · t · (−t). By construction, C is
in B(Z) and zero-free. Let a ∈ C+ and b ∈ C−. Since B has at least two positive
elements, if a ∈ B+, then a < w(B); similarly, since B has at least two negative ele-
ments, if b ∈ B−, then b < w(B). So if a ∈ B+ and b ∈ B−, then a + b < 2w(B) <

t + w(B) = w(C). If a ∈ B+ and b = t , then a + b < w(B)+ t = w(C). Similarly,
if a = t and b ∈ B−, then a + b < w(C). Lastly, if a = b = t , then a + b = 2t >

t + w(B) = w(C). In all cases, a + b �= w(C), so C is nice.
Clearly, [t (−t)] is an irreducible of B(Z). We will show that every factorization of

C is just a factorization of B with [t (−t)] appended. This creates a bijection between
the factorizations of C and the factorizations of B, where all the lengths increase by
1. Thus, μ(C, n + 1) = μ(B, n) for all n ≥ 1. Yet C = B · [t (−t)], so C is reducible,
and thus, μ(C, 0) = μ(C, 1) = 0.

Suppose C = A1 · · · An is a factorization of C into irreducibles. Then some factor,
say An , contains −t . Since t > w(B), An must contain t as well because no number
of positive terms from B will have a sum greater than or equal to t on their own. But
now, [t (−t)] divides An in F(Z), and since B(Z) is saturated, [t (−t)] divides An in
B(Z). Since An was irreducible, An = [t (−t)]. The remaining terms A1 · · · An−1 must
be a factorization of B, and the factorization of C had the claimed form.

Whereas the shifting lemma increases all the lengths by 1, the augmenting lemma
allows us to increase the multiplicities. Specifically, the augmenting lemma will allow
us to create one new factorization of length 2 but maintain the multiplicities of all the
other factorization lengths.

Lemma 2 (Augmenting Lemma). Suppose B ∈ B(Z) is zero-free, reducible, and
nice. Then we can construct a nice, zero-free, reducible C ∈ B(Z) from B such that
μ(C, 2) = μ(B, 2)+ 1 and μ(C, n) = μ(B, n) for all n �= 2.

Proof. Suppose B ∈ B(Z) is zero-free, reducible, and nice. Write

B = a[u1]
1 a[u2]

2 · · · a[un ]
n (−b1)

[v1] · · · (−bm)[vm ].
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Set w = w(B). Since B is reducible, w > ai and w > b j for all i and j . Set

C = a[u1]
1 a[u2]

2 · · · a[un ]
n (w − b1)

[v1] · · · (w − bm)[vm ](−w)[v],

where v = v1 + v2 + . . .+ vm . Then C is zero-free because B was zero-free and w >

b j for all j . By construction, we have that C ∈ B(Z).
We claim that C is nice. From C−, we can only choose w. From C+, we can choose

either ai or w − b j for some 1 ≤ i ≤ n or 1 ≤ j ≤ m. So the sum of a positive and
negative term of C is w + ai < 2w or 2w − b j < 2w. But w(C) = vw ≥ 2w because
B was reducible and thus had at least two negative terms. Hence, C is nice.

Our construction of C has given us two long irreducible factors, D1 and D2. Specif-
ically, let

D1 = a[u1]
1 a[u2]

2 · · · a[un ]
n (−w), and D2 = (w − b1)

[v1] · · · (w − bm)[vm ](−w)[v−1],

which are both blocks by the definition of w = w(B). Since D1 has only one negative
term, D1 is irreducible. A factor of D2 would need positive terms that add up to 0
mod w, which is only possible if we use all the positive terms since

∑m
i=1 vi bi = w.

Thus, D2 is irreducible. Since C = D1 D2 and both D1 and D2 are irreducible, this is
the only factorization of C that has either D1 or D2 as a factor. This factorization will
be precisely the “extra” factorization of C of length 2.

To handle the other factorizations, we will produce a bijection f from the factors
(irreducible or reducible) of B to the factors of C other than D1 and D2. This map f
will be sufficiently multiplicative to induce a bijection from the factorizations of B to
the factorizations of C , omitting the factorization C = D1 D2.

Specifically, if the block A = a[s1]
1 a[s2]

2 · · · a[sn ]
n (−b1)

[t1] · · · (−bm)[tm ] divides B, then
si ≤ ui and t j ≤ v j , and so we can define:

f (A) = a[s1]
1 a[s2]

2 · · · a[sn ]
n (w − b1)

[t1] · · · (w − bm)[tm ](−w)[t1+t2+...+tm ].

Clearly, f (A) is a block, f (A) divides C , and f (A) is a nonempty block if and only
if A was. As a special case, we have f (B) = C . Since B was nice, w − bi �= a j

for all i �= j , so C has n + m distinct positive terms. Hence, we can unambiguously
determine each factor A from its image f (A), and so f is injective.

By niceness, every f (A) contains ai and w − b j for some 1 ≤ i ≤ n and 1 ≤ j ≤
m. Hence, D1 and D2 are not in the range of f , but we claim all other factors of C are.
Suppose

D = a[y1]
1 a[y2]

2 · · · a[yn ]
n (w − b1)

[z1] · · · (w − bm)[zm ](−w)[z]

is a factor of C other than D1 or D2. Since D ∈ B(Z), we have

0 =
n∑

i=1

yi ai +
m∑

j=1

(w − z j )b j − zw =
n∑

i=1

yi ai −
m∑

j=1

z j b j + w

m∑
j=1

z j − zw,

and thus, w divides
∑n

i=1 yi ai −
∑m

j=1 z j b j . If z j = 0 for all j , then w divides∑n
i=1 yi ai . Yet yi ≤ ui for all i , so 0 <

∑n
i=1 yi ai ≤ w. Thus,

∑n
i=1 yi ai = w, and

y j = u j for all i , and so D = D1, a contradiction. Similarly, if instead yi = 0 for
all i , then w divides

∑m
j=1 z j b j and an analogous argument shows D = D2, another

contradiction. Thus, we have yi > 0 for some i and z j > 0 for some j .
Since yi > 0 for some i , we have 0 <

∑n
i=1 yi ai ≤

∑n
i=1 ui ai = w. Similarly,

since z j > 0 for some j , we have 0 <
∑m

j=1 z j b j ≤
∑m

j=1 v j b j = w. Since w divides
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∑n
i=1 yi ai −

∑m
j=1 z j b j , the inequalities and divisibility condition force

∑n
i=1 yi ai

=∑m
j=1 z j b j . Hence, the sequence

A = a[y1]
1 a[y2]

2 · · · a[yn ]
n (−b1)

[z1] · · · (−bm)[zm ]

is in B(Z) and A is clearly a factor of B with f (A) = D, as desired.
Our map f is sufficiently multiplicative. That is to say, if A1, A2 ∈ B(Z) and

A1 A2|B, then f (A1 A2) = f (A1) f (A2). Hence, if f (A) is irreducible, then so is A.
On the other hand, if f (A) �= C and f (A) is reducible, then f (A) = DD′ for some
D, D′ /∈ {D1, D2}. By surjectivity, we can find factors E , E ′ of B such that f (E) = D
and f (E ′) = D′. Because we can determine E and E ′ from their images, we can check
that the exponents match up so that E E ′ = A and A is reducible. Thus, A is irreducible
if and only if f (A) is irreducible. By multiplicativity, if B = A1 · · · Ak is a factoriza-
tion of B into k irreducibles, then C = f (B) = f (A1) · · · f (Ak) is a factorization of
C into k irreducibles. The injectivity of f assures that distinct factorizations of B get
mapped to distinct factorizations of C , while the surjectivity of f assures that we get
every factorization of C other than C = D1 D2. Thus, C has exactly the same num-
ber of factorizations as B of each length, except length 2, where C has the additional
factorization C = D1 D2.

We are now ready to explicitly construct blocks with a given multiplicity function.

Theorem 3. Let G be an additive abelian group with a given element g ∈ G of infinite
order. Then B(G) is length-multiplicity complete. For each function f : N≥2 → N with
finite, nonempty support, one can recursively construct a nice, zero-free, reducible
B f ∈ B(G) with μ(B f , n) = f (n) for all n ≥ 2.

Proof. Since g ∈ G has infinite order, 〈g〉 ∼= Z, and so, after identifying these
groups, we may assume B(Z) ⊆ B(G). We will construct our blocks in B(Z).

Given such a function f : N≥2 → N, we can evaluate the finite sum σ( f ) =∑∞
n=2 n f (n). We will prove by induction on N ∈ N that, if σ( f ) ≤ N , then one can

recursively construct a block B f ∈ B(Z) with μ(B f , n) = f (n) for all n ≥ 2.
Note that σ( f ) ≥ 2. In the base case, if σ( f ) = 2, then necessarily f (2) = 1 and

f (n) = 0 for all n ≥ 3. For this f , take B f = 1[2]2[2](−3)[2], which is nice, zero-
free, and clearly has the requisite multiplicity function since its only factorization is as
[1 · 2 · (−3)]2.

Now assume we have an explicit construction whenever σ( f ) ≤ N for some
N ≥ 2. Suppose we have a function f : N≥2 → N with finite, nonempty support
and σ( f ) = N + 1. If f (2) ≥ 1, then set g(2) = f (2) − 1 and g(n) = f (n) for all
n ≥ 3. Then g : N≥2 → N has finite, nonempty support and σ(g) = σ( f ) − 2 > 0.
By the induction hypothesis, we can explicitly construct a nice, zero-free, reducible
Bg with μ(Bg, n) = g(n) for all n ≥ 2. Now use the augmenting lemma to con-
struct a nice, zero-free, reducible B f from Bg with μ(B f , 2) = g(2)+ 1 = f (2) and
μ(B f , n) = g(n) for all n ≥ 3.

If instead f (2) = 0, then set g(n) = f (n + 1) for all n ≥ 2. By the shifting lemma,
we can construct a nice, zero-free, reducible B f from Bg with μ(B f , 2) = 0 = f (2)

and μ(B f , n + 1) = μ(Bg, n) = g(n) = f (n + 1) for all n ≥ 2.

Our technique of augmenting and shifting can also be used for a constructive version
of Kainrath’s theorem in torsion groups of infinite exponent. However, we need to have
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an explicit list of elements of arbitrarily high order, and there are some subtle technical
obstacles to reducing blocks from B(Z) to blocks in B(Z/mZ) while maintaining
factorization multiplicities. The details appear in [6].

The proof of Theorem 3 provides a recursive construction of a block B f ∈ B(Z)

whose multiplicity function matches a given function f with nonempty, finite support.
We will list such functions f as an infinite tuple, ( f (2), f (3), f (4), . . .). In order to
apply our recursive algorithm, we need to determine how f was constructed from the
base function (1, 0, 0, 0, . . .) using shifts and augments. We work backwards from f :
Any time we have a nonzero number in the first coordinate, then that came from an
augment. If instead we have zero in the first coordinate, then that came from a shift.
We illustrate this algorithm with an example.

Example 4. Suppose we wish to find a block B whose multiplicity function is
μ(B, 2) = 1, μ(B, 3) = 3, μ(B, 5) = 1, and μ(B, n) = 0 for all other n. First, we
want to construct the tuple (1, 3, 0, 1, 0, . . .) from the base tuple (1, 0, 0, 0, 0, . . .)

using shifts and augments using the heuristic above:

(1, 3, 0, 1, 0, . . .)
aug←− (0, 3, 0, 1, 0, . . .)

shift←− (3, 0, 1, 0, 0, . . .)
aug←−

(2, 0, 1, 0, 0, . . .)
aug←− (1, 0, 1, 0, 0, . . .)

aug←− (0, 0, 1, 0, 0, . . .)
shift←−

(0, 1, 0, 0, 0, . . .)
shift←− (1, 0, 0, 0, 0, . . .).

To obtain B from the base, we reverse the order of the operations: shift, shift, augment,
augment, augment, shift, augment. Now, we generate the blocks.

Base: B0 = 1[2]2[2](−3)[2].
Shift: Pick t > w(B0) = 6. Say t = 7. Then B1 = 1[2]2[2]7(−3)[2](−7).
Shift: Pick t > w(B1) = 13. Say t = 14. Then

B2 = 1[2]2[2] · 7 · 14 · (−3)[2](−7)(−14).

Augment: We have w(B2) = 27. So

B3 = 1[2]2[2]7 · 14 · 24[2] · 20 · 13 · (−27)[4] = 1[2]2[2]7 · 13 · 14 · 20 · 24[2](−27)[4].

Augment: We have w(B3) = 108. So

B4 = 1[2]2[2] · 7 · 13 · 14 · 20 · 24[2]81[4](−108)[4].

Augment: We have w(B4) = 432. So

B5 = 1[2]2[2] · 7 · 13 · 14 · 20 · 24[2]81[4]324[4](−432)[4].

Shift: Pick t > w(B5) = 1728, say t = 1729. Then

B6 = 1[2]2[2] · 7 · 13 · 14 · 20 · 24[2]81[4]324[4] · 1729 · (−432)[4](−1729).

Augment: We have w(B6) = 3457. So

B7 = 1[2]2[2] · 7 · 13 · 14 · 20 · 24[2]81[4]324[4] · 1729 · 3025[4] · 1728 · (−3457)[5]

= 1[2]2[2] · 7 · 13 · 14 · 20 · 24[2]81[4]324[4] · 1728 · 1729 · 3025[4](−3457)[5].
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This block B = B7 has one factorization of length 2, three factorizations of length 3,
one factorization of length 5, and no others. Explicitly, we have

Length 2:

[1[2]2[2] · 7 · 13 · 14 · 20 · 24[2]81[4]324[4]1729(−3457)][1728 · 3025[4](−3457)[4]];
Length 3: [1[2]2[2]7 · 13 · 14 · 20 · 24[2]81[4]3025(−3457)]·
[324[4]3025[3](−3457)[3]] · [1728 · 1729 · (−3457)];
Length 3: [1[2]2[2] · 7 · 13 · 14 · 20 · 24[2] · 324 · 3025(−3457)]·
[81[4]324[3]3025[3](−3457)[3]][1728 · 1729 · (−3457)];
Length 3: [1[2]2[2] · 7 · 14 · 81 · 324 · 3025(−3457)]·
[13 · 20 · 24[2]81[3]324[3]3025[3](−3457)[3]][1728 · 1729(−3457)];
Length 5: [1 · 2 · 24 · 81 · 324 · 3025(−3457)]2[7 · 20 · 81 · 324 · 3025(−3457)]·
[13 · 14 · 81 · 324 · 3025(−3457)][1728 · 1729(−3457)].

As one can see, the process of shift and augment constructs blocks with the desired
length multiplicity, but the weights and cardinalities grow very quickly. Our method is
likely not the most efficient, and so we ask the following.

Question: Given a function f : N≥2 → N with finite nonempty support, what is the
smallest weight or smallest cardinality block B ∈ B(Z) whose multiplicity function
equals f ? We also ask the analogous question about length sets.

4. AN INTRODUCTION TO KRULL MONOIDS. As mentioned earlier, Krull
monoids generalize algebraic number rings and Dedekind domains, but they also
include monoids like block monoids, which cannot be the multiplicative monoid of
a domain. They are the most general setting to have a class group that controls the
factorization; other settings either do not have a class group or have one that contains
only partial information about the factorization. One might expect that generalizing
the constructions from algebraic number rings and Dedekind domains to the realm of
monoids would produce an inherently complicated definition for a Krull monoid. Such
a complicated, ideal-theoretic definition does exist. However, there is an equivalent,
much simpler definition that we will present instead. This definition involves only
general ideas, like free monoids and homomorphisms. With this alternate definition,
the difficulty does not lie in understanding the definition but, rather, in verifying its
correspondence with the classical ideal-theoretic formulation from number theory.

Let F(P) be a free abelian monoid on a set P . This monoid has unique factoriza-
tion, and the elements of P are precisely the irreducibles (in fact, primes) of F(P).
Given two elements x = pd1

1 · · · pdn
n and y = pe1

1 · · · pen
n of F(P), where di , ei ≥ 0 for

all i , the uniqueness of factorization allows us to define the greatest common divisor
of x and y as gcd(x, y) = p f1

1 · · · p fn
n , where fi = min{di , ei } for all 1 ≤ i ≤ n. We

can extend this definition in the natural way to take the gcd(A) of subsets A of F(P).
We now have all we need to define Krull monoids.

Definition. Let H be a commutative, cancellative, atomic monoid, and let F(P) be a
free abelian monoid. A monoid homomorphism φ : H → F(P) is a divisor theory
for H if
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(i) for each p ∈ P , there exists a finite subset X ⊆ H such that p = gcd(φ(X)), and
(ii) for all x, y ∈ H , if φ(x)|φ(y) in F(P), then we already have x |y in H .

A monoid H is Krull if it has a divisor theory in some free abelian monoid F(P).

Intuitively, the divisor theory reveals that elements of Krull monoids have a secret
decomposition into atoms from some external monoid, namely F(P). Condition (i)
ensures that the Krull monoid, while it does not have explicit knowledge of these secret
atoms in P , can encode those secret atoms using finite subsets. Condition (i i) ensures
that factorization in F(P) aligns well with factorization in H ; specifically, F(P) does
not know more than H does about how elements of H fit inside each other. Condition
(i i) also implies that φ(x) = φ(y) if and only if x and y are associates in H .

The full connection between this definition and the classical, ideal-theoretic defini-
tion is explained in Chapter 2.4 of [16]. We will be content to sketch some illustrative
examples of Krull monoids.

Example 5. Every block monoid B(G) over a finite abelian group G can be shown to
have a divisor theory. If |G| = 1, then each block B ∈ B(G) is just [0]n for some n ≥
0. Thus, B(G) is isomorphic to the free abelian monoid F(G), and this isomorphism is
trivially a divisor theory. Similarly, if |G| = 2, then write G = {0, g}. Each block B ∈
B(G) is just [0]n[g2]m for some n, m ≥ 0. Let A = [0] and A′ = [g2]. Then clearly
B(G) is isomorphic to the free abelian monoid F({A, A′}), and this isomorphism is
trivially a divisor theory.

If |G| ≥ 3, then B(G) will not be isomorphic to a free abelian monoid, but we
claim that the inclusion map of B(G) in F(G) is a divisor theory. In Section 2, we
showed B(G) is saturated, which is precisely condition (i i). Let g ∈ G. If g = 0,
then g = gcd([0], [0]). If g �= 0 and ord(g) = n ≥ 3, then g = gcd([g(−g)], [gn]).
If g �= 0 and ord(g) = 2, then, since |G| ≥ 3, we may choose some h ∈ G\{0, g}.
Then g = gcd([g2], [g · h · (−g − h)]). Hence, every g ∈ G is the gcd of a finite set
of blocks, so condition (i) is true.

One can adapt these arguments with some additional care to show that, if G0 ⊆ G,
then the block monoid B(G0) is also Krull.

Example 6. Every Dedekind domain D is Krull. We will sketch how the classical
theory matches up with the definition of Krull monoids using a divisor theory.

Let P be the set of prime ideals of D. Every nonzero proper ideal I of D factors
uniquely as a product of prime ideals, and thus, the elements of F(P) can be identified
with the nonzero ideals I of D (here, 1 ∈ F(P) is identified with the ideal D). This
yields a function φ : D• → F(P), where, for each nonzero x ∈ D, we define φ(x) to
be (x), the principal ideal generated by x . Since (xy) = (x)(y), we have that φ is a
monoid homomorphism. If (x)J = (y) for some ideal J of D, one can show that J
must be principal and J = (z) for some z ∈ D such that xz = y. Hence, if φ(x)|φ(y)

in F(P), we have argued that x |y already in D.
Now, let p be a prime ideal. Choose a nonzero a ∈ p\p2. Then p appears exactly

once in the unique factorization of the ideal (a). If (a) = p, then clearly p =
gcd((a), (a)). Otherwise, (a) = pq

ei
1 · · · qek

k for some prime ideals qi with k ≥ 1
and ei ≥ 1 for all i . For each 1 ≤ i ≤ k, let Ji = pq

e1
1 · · · qei−1

i−1 q
ei+1
i+1 · · · qek

k . Then
we may choose a nonzero ai ∈ Ji\Jiqi . Since ai ∈ Ji , we are guaranteed that the
unique factorization of (ai) has p and q

e j
j for j �= i . However, since ai /∈ Jiqi , we

know that qi cannot appear in the unique factorization of (ai). By construction,
gcd((a), (a1), . . . , (ak)) = p, and so every prime ideal is the gcd of a finite set of
principal ideals. Thus, the Dedekind domain has a divisor theory.
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Example 7. We now can give more details why Z
[√−5

]
is half-factorial. The class

group of Z
[√−5

]
is isomorphic to Z/2Z, where the identity element is the class of

principal prime ideals, and the nonidentity element is the class of all nonprincipal
prime ideals. Because of the structure of the class group, the product of any two non-
principal prime ideals is a principal ideal in Z

[√−5
]
. Conversely, if x ∈ Z

[√−5
]

is irreducible, then we can show that (x) = p, a principal prime ideal (in which case
x is prime), or (x) = p1p2, a product of two nonprincipal prime ideals. Indeed, if
(x) = p1 · · · pn and pi is a principal prime ideal for some i , then pi = (y) for some
nonunit y ∈ Z[

√−5]. Thus y|x and by irreducibility, x and y are associates, so (x) =
(y) = pi . If all the pi are nonprincial instead, then p1p2 is a principal ideal (y) for some
nonunit y. So y|x and by irreducibility (x) = (y) = p1p2. Hence, for any nonzero,
nonunit z ∈ Z[

√−5], if we factor (z) = p1 · · · pkq1 · · · qm , where the pi are principal
and the qi are nonprincipal, then m is even and by the uniqueness of ideal factoriza-
tion, every factorization of z in Z[

√−5] involves exactly k prime irreducibles and m/2
nonprime irreducibles.

Concretely, we have ideal factorizations

(2) = p2 (3) = q1q2

(
1+√−5

)
= pq1

(
1−√−5

)
= pq2

where the nonprincipal ideals are p = (2, 1 + √5) = (2, 1 − √−5), q1 = (3, 1
+ √−5), and q2 = (3, 1 − √−5). The earlier example of nonunique factorization
was

2 · 3 = (1+√−5) · (1−√−5),

which corresponds to factorizations (p2) · (q1q2) = (pq1) · (pq2).

The formulation of Krull monoids in terms of a divisor theory also reveals a simple
construction of the class group. If M is a submonoid of N , then we can define an
equivalence relation ∼M by saying for x, y ∈ N , x ∼M y if there exists m, m ′ ∈ M
such that mx = m ′y. We will denote the equivalence class of x by [x]. This equivalence
relation is also a congruence, for if x ∼M y and x ′ ∼M y′, then xx ′ ∼M yy′. Thus,
the quotient N/ ∼M has the natural structure of a commutative monoid. However, in
general, it need not be cancellative, and it may very well collapse to the trivial monoid
{1} even if M �= N .

If H is a Krull monoid with divisor theory φ : H → F(P), then the quotient
G = F(P)/ ∼φ(H) has a particularly rich structure. Let x ∈ F(P), and assume
x ∼φ(H) 1. Then there are φ(m), φ(m ′) ∈ φ(H) such that φ(m)x = φ(m ′). So
φ(m) | φ(m ′) in F(P), and so by condition (i), we have that m | m ′ in H . Let
m ′ = my for some y ∈ H . Then φ(m)x = φ(m ′) = φ(m)φ(y), and since F(P) is
cancellative, we conclude x = φ(y). Thus, [1] = φ(H), and so the quotient G is not
trivial.

On the other hand, if p ∈ P , then by condition (i i), p = gcd(φ(X)) for some
finite set X . Choose some x ∈ X . Then p|φ(x), so we may pick y ∈ F(P) such that
py = φ(x). But then [p][y] = [φ(x)] = [1], so [p] is invertible. Since the p ∈ P gen-
erate F(P), all the elements of G are invertible, and thus, G is a group, called the class
group. We set G0 = {[p] | p ∈ P} to be the set of classes with primes and henceforth
will write G additively. Since F(P) is generated as a monoid by P , the subset G0

generates G as a monoid (which is stronger than generating as a group).
The observant reader may notice that we have not used the full power of condition

(i i) here to show that the quotient G is a group. That power is needed to show that
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factorization in H can be controlled by factorization in B(G0). We will not go into
detail here, but the interested reader may wish to consult [5] as a starting point.

Theorem 8. Let H be a Krull monoid with class group G and G0 ⊆ G the set
of classes containing primes. Then there is a surjective monoid homomorphism
θ : H → B(G0) satisfying, for all x ∈ H:

• x is a unit if and only if θ(x) = 1, the empty sequence;
• x is irreducible if and only if θ(x) is an irreducible block; and
• if θ(x) = B1 · · · Bn for some irreducible blocks Bi , then there exist irreducibles

y1, . . . , yn ∈ H such that x = y1 · · · yn and θ(yi ) = Bi for all i .

Consequently, L(x) = L(θ(x)) and for all n ≥ 1, μ(x, n) ≥ μ(θ(x), n).

Proof. Sketch: Given x ∈ H , consider φ(x) ∈ F(P), which we can write as
φ(x) = pe1

1 · · · pen
n . Define θ(x) = [p1]e1 · · · [pn]en , which is a sequence in F(G0).

However, if we evaluate this sequence in G, we get:

σ(θ(x)) = e1[p1]+ · · · + en[pn] = [φ(x)] = 0,

so θ(x) is in fact in B(G0), as desired. We leave the other claims to the reader.

Thus, the block monoid B(G0) contains all the information about the length sets
of H . However, distinct irreducibles of H may be identified by θ , implying that dis-
tinct factorizations of an element x ∈ H may collapse to a single factorization of θ(x).
So B(G0) unfortunately does not contain all the information about the length multi-
plicities of H , and we only have an inequality between the values of the multiplicity
function. Even so, the connection is strong enough to pull back properties of the block
monoid to the original Krull monoid.

Corollary 9. Let H be a Krull monoid with class group G and G0 ⊆ G the set of
classes containing primes. Then H is length-set complete if and only if B(G0) is.

For every B ∈ B(G0), there exists an x ∈ H with θ(x) = B and for each n ≥ 1,
μ(x, n) = μ(B, n). Hence, if B(G0) is length-multiplicity complete, then so is H.

Proof. The statement about length sets follows from the previous theorem. For
length multiplicities, we need some additional care. Let φ : H → F(P) be a divi-
sor theory for H . Given B ∈ B(G0), write out B = ge1

1 · · · gen
n . For each 1 ≤ i ≤ n,

choose pi ∈ P such that [pi ] = gi . Consider the element y = pe1
1 · · · pen

n ∈ F(P). The
congruence class of y in the additive group G is

[y] = e1[p1]+ · · · + en[pn] = e1g1 + · · · + engn = σ(B) = 0

since B is zero-sum. But we argued that, for a divisor theory, the kernel of the pro-
jection F(P)→ G = F(P)/ ∼φ(H) is precisely φ(H), so y ∈ φ(H). Therefore, we
may pick x ∈ H such that φ(x) = y. The definition of θ in Theorem 8 indicates that
θ(x) = B. We omit the details, but one can argue that μ(x, n) = μ(B, n) for each n.
Essentially, by picking only one p ∈ P for each g ∈ G0, we assured that multiple,
nonassociate irreducibles do not collapse to the same irreducible of B(G0).

As an immediate consequence, Theorem 3 gains a wider application.

November 2016] FINDING FACTORIZATION LENGTHS 863

This content downloaded from 129.132.208.176 on Sat, 17 Dec 2016 12:02:12 UTC
All use subject to http://about.jstor.org/terms



Corollary 10. Let H be a Krull monoid with class group G and primes in every class.
Assume we are given g ∈ G of infinite order. Let θ : H → B(G) be the homomor-
phism above, and assume that preimages under θ of the elements of 〈g〉 can be found
constructively. Then H is constructively length-set complete and length-multiplicity
complete.

Proof. By Theorem 3, any length set or length multiplicity function can be realized
by some recursively constructed B ∈ B (〈g〉) ⊆ B(G). By the assumptions on θ , we
can constructively find a preimage x ∈ H of B under θ .

We finish this section with two additional examples of Krull monoids with infinite
class group that have been found in recent years. They do not always have primes
in every class, however, which gives an impetus to removing that hypothesis from
Kainrath’s theorem.

Example 11. Let n, m ≥ 2, and choose a1, . . . , an, b1, . . . , bk ∈ N≥2. We can con-
struct the homogeneous linear Diophantine monoid M(a1, . . . , an; b1, . . . , bk) as

M(a1, . . . , an; b1, . . . , bk) =
{

(x1, . . . , xn+k) ∈ Nn+k

∣∣∣∣∣
n∑

i=1

ai xi =
k∑

i=1

bi yn+i

}
.

In [8, 9], the authors show that these monoids are Krull with class group congruent to
Z. However, they also showed that there are only finitely many classes with primes,
i.e., that G0 ⊆ Z is finite. Hence, Kainrath’s theorem does not apply to these examples.

Example 12. Module theory also contains interesting examples of Krull monoids with
infinite class group [3, 4, 13]. For example, if R is a local complete Noetherian com-
mutative ring, we can consider the class C of finitely generated right-modules over
R. Let V(C) be the isomorphism classes of elements of C. Then V(C) can be turned
into a monoid with the operation [M]⊕ [N ] = [M ⊕ N ]. In a MONTHLY article [3],
the authors show that if R is one-dimensional with reduced completion, then V(C)

is cancellative and, in fact, a Krull monoid. The authors provide an explicit example
(Example 4.17) where the class group is congruent to Z and contains a prime in every
class. In general, varying the ring or the class of modules will give different class
groups G and subsets G0.

5. SUBSETS OF Z. Kainrath’s theorem assumes that every class contains a prime.
However, as the final two examples from the previous section attest, this does not
always occur. In fact, results by Claborn [10], Grams [17], and Leedham-Green [20]
show that, for any abelian group G and any subset G0 ⊆ G that generates G as a
monoid, there is a Dedekind domain D whose class group is G and set of classes
with primes is G0. Ideally, then, we would like to know whether these general Krull
monoids are length-set complete and length-multiplicity complete. However, both
Kainrath’s proof for all infinite G and our constructive proof for G ∼= Z heavily use
the fact G0 = G, so new techniques must be developed. We will still use the techniques
from Section 4 to transfer most of the problem from the Krull monoid to the block
monoid B(G0). However, depending on the subset G0, there can still be complicated
additive combinatorics involved.

In this section, we work through a fairly simple example by having G ∼= Z and
G0 = {±bk | k ∈ N0} for some fixed b ≥ 2. Even in this simple example, we are only
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able to construct length sets, not length multiplicities, though we have determined all
the possible length sets. Finding the length sets for arbitrary G0 � Z is still an open
problem; the upcoming article [6] by the first and third authors makes considerable
headway toward a solution.

First, we should remark that length-set (and, consequently, length-multiplicity)
completeness is not guaranteed. By [1, 2], if G0 ⊆ Z has only finitely many positive
elements or finitely many negative elements, then there is a finite rational num-
ber d such that for any length set L = L(B) for a nontrivial B ∈ B(G0), we have
max L/ min L ≤ d. Thus, a necessary condition for length-set and length-multiplicity
completeness in Z is that G0 has infinitely many positive and negative elements. We
start with some lemmas.

Proposition 13. Let n ≥ 2. Suppose a1, a2, . . . , an ∈ N such that a1|a2| . . . |an. If
v1, v2, . . . , vn ≥ 1 such that

∑n−1
i=1 vi ai = vnan, then for each 1 ≤ w ≤ vn, there exists

0 ≤ vi,w ≤ vi for each 1 ≤ i ≤ n − 1 such that
∑n−1

i=1 vi,wai = wan.

Proof. By induction on n ≥ 2. Base case: If v1a1 = v2a2 and v2 ≥ 1, then v1 ≥ 1
as well. Since a2 = a1m for some m ∈ N, we have v1 = v2m, so for each 1 ≤ w ≤ v2,
we may take v1,w = wm.

Assume the statement is true for some n ≥ 2. Let a1, . . . , an, an+1 ∈ N such that
a1|a2| . . . |an|an+1 and v1, v2, . . . , vn, vn+1 ≥ 1 such that

∑n
i=1 vi ai = vn+1an+1. Let

1 ≤ w ≤ vn+1 be given, and choose m ∈ N such that an+1 = anm. If wm ≤ vn , then
setting vn,w = wm and vi,w = 0 for all 1 ≤ i ≤ n − 1, we get our desired equality.
Assume instead that wm > vn . We have

n−1∑
i=1

vi ai = vn+1an+1 − vnan = (vn+1m − vn)an.

Since 1 ≤ wm − vn ≤ vn+1m − vn , we may let w′ = wm − vn . By the induc-
tion hypothesis, for each 1 ≤ i ≤ n − 1, we may pick 0 ≤ vi,w′ ≤ vi such that∑n−1

i=1 vi,w′ai = w′an . Now, set vi,w = vi,w′ for all 1 ≤ i ≤ n − 1, and set vn,w = vn .
We have, as desired, that

n∑
i=1

vi,wai = w′an + vn,wan = (wm − vn)an + vnan = wman = wvn+1.

Lemma 14. Let b ≥ 2 be given, and let G0 = {±bk | k ∈ N0} be the set of positive
powers of b and their negatives. If X ∈ B(G0) is irreducible, then X has only one
positive or one negative term.

Proof. Suppose X = (bk1)[e1] · · · (bkm )[em ](−b�1)[ f1] · · · (−b�n )[ fn ], where k1 <

k2 < . . . < km and �1 < . . . < �n . If any ki = � j , then the irreducible (bki )(−bki )

divides X , and since X is irreducible, we have X = (bki )(−bki ). Thus, assume that
ki �= � j for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. Without loss of generality, assume k1 < �1.
Choose 1 ≤ r ≤ m maximal such that kr < �1.

We have w(X) =∑n
j=1 f j b� j so w(X) ≡ 0 mod b�1 since � j ≥ �1 for all 1 ≤ j ≤

n. On the other hand, we also have w(X) =∑m
i=1 ei bki , and so
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0 ≡ w(X) =
m∑

i=1

ei b
ki ≡

r∑
i=1

ei b
ki mod b�1 .

Thus,
∑r

i=1 ei bki = eb�1 for some e ≥ 1. Since bk1 |bk2 | . . . |bkr |b�1 , we may apply
Proposition 13 to find 0 ≤ e′i ≤ ei for all 1 ≤ i ≤ r , such that

∑r
i=1 e′i b

ki = b�1 . Thus,
the irreducible block (bk1)[e′1] · · · (bkr )[e′r ](−b�1) divides X , and since X is irreducible,
we have X = (bk1)[e′1] · · · (bkr )[e′r ](−b�1).

The principal consequence of the previous lemma is that, when we factor some
B ∈ B(G0), we can track the irreducible factors X of B by their single positive or
single negative terms. In particular, the weight, w(X), will just be the absolute value
of that single term. This structure forces the length set of B to have a uniform spacing,
as described in the next theorem.

Theorem 15. Let b ≥ 2 be given, and let G0 = {±bk | k ∈ N} be the set of positive
powers of b and their negatives. Let B ∈ B(G0). Each factorization B = X1 · · · X�

of B satisfies � ≡ w(B) mod (b − 1). Thus, if L(B) = {�1, . . . , �r }, then for each
1 ≤ i ≤ j ≤ r we have �i ≡ � j mod (b − 1).

Proof. Let X be any irreducible factor of B. By Lemma 14, X has exactly one
positive or one negative term, say bk or −bk . In either case, w(X) = bk , and hence,
w(X) ≡ 1 mod b − 1. If B = X1 . . . X� is a factorization of B, then

w(B) = w(X1)+ · · · + w(X�) ≡ 1+ · · · + 1 = � mod (b − 1)

as desired. The rest of the theorem follows.

This theorem immediately implies that, if b ≥ 3 and G0 = {±bk | k ∈ N}, then
B(G0) is not length-set complete, in stark contrast to B(Z). However, if b = 2, then
this theorem does not exclude any length sets. It turns out that, when b = 2, B(G0) is
length-set complete, and for b ≥ 3, the spacing required by the previous theorem turns
out to be the only restriction on length sets, as we will demonstrate in Theorem 17.

We will need a new approach for constructing blocks in B(G0) with a given length
set, compared to B(Z). The shifting lemma still works in our context since its proof
only required us to find a t ∈ G0 that is greater than a given weight w(B) and for
which −t ∈ G0 as well. However, adapting the augmenting lemma poses a greater
challenge. In that lemma, we took an existing sequence B and created a new sequence
with terms like−w(B) and w(B)− bi . While the terms of B come from G0, we cannot
guarantee in general that w(B) and w(B)− bi will also land in G0. Thus, we will have
to replace the augmenting lemma with a new lemma catered to the structure of G0. Our
replacement gives an explicit, rather than recursive, construction of length sets. The
arguments are slightly more involved, and unfortunately, the additional complications
force us to only study length sets and not length multiplicities.

Lemma 16. Let b ≥ 2 and 0 = a0 < a1 < a2 < · · · < ak < ak+1 = n. Set

B = 1[b]b[b−1](b2)[b−1] · · · (bn−1)[b−1](bn)·
(−bn)(−bak )[ek ](−bak−1)[ek−1] · · · (−ba1)[e1](−1)[e0],
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where e0 = ba1 , and for each 1 ≤ i ≤ k, we have ei = bai+1−ai − 1. Then

L(B) = {2+ (b − 1)(n − a j ) | 0 ≤ j ≤ k + 1}
= {2, 2+ (b − 1)(n − ak), . . . , 2+ (b − 1)(n − a1), 2+ (b − 1)n} .

Proof. Let 0 = a0 < a1 < a2 < · · · < ak < ak+1 = n and B be given satisfying the
hypotheses. Note that the choice of exponents ei makes

j∑
i=0

ei b
ai = ba j+1 (5.1)

for every 0 ≤ j ≤ k. In particular,
∑k

i=0 ei bai + bn = bak+1 + bn = 2bn , and since

b · 1+ (b − 1)b + (b − 1)b2 + . . .+ (b − 1)bn−1 + bn = 2bn,

the sum of the negative terms will cancel with the positive terms, so B ∈ B(G0).
We now establish several factorizations of B, starting with the longest one. For each

0 ≤ m ≤ n, choose jm ≤ k maximal such that a jm ≤ m. Set

Am = bm(−ba jm )[ fm ],

where fm = bm−a jm . Since Am has only one positive term, Am is an irreducible
of B(G0). Note that if a j ≤ m ≤ m ′ < a j+1, then a jm = a j = a jm′ . Thus, for each
1 ≤ j ≤ k we have

(b − 1)

a j+1−1∑
m=a j

fm = (b − 1)

a j+1−1∑
m=a j

bm−a jm = (b − 1)

a j+1−1∑
m=a j

bm−a j

= (b − 1)

a j+1−a j−1∑
i=0

bi = (b − 1)
ba j+1−a j − 1

b − 1
= e j .

As a result,

Ab−1
a j

Ab−1
a j+1 · · · Ab−1

a j+1−1 = (ba j )[b−1](ba j+1)[b−1] · · · (ba j+1−1)[b−1](−ba j )[e j ],

so this product of irreducibles divides B and uses up all the instances of −ba j in B.
For j = 0, we have A0 = 1 · (−1) and

1+ (b − 1)

a1−1∑
m=a0

fm = 1+ (b − 1)

a1−1∑
m=0

bm = 1+ (b − 1)
ba1 − 1

b − 1
= ba1 = e0.

Thus,

Ab
0 Ab−1

1 · · · Ab−1
a1−1 = 1[b](b1)[b−1](b2)[b−1] · · · (ba1−1)[b−1](−1)[e0]

uses up all the instances of −1 in B. Combining these observations for all 0 ≤ j ≤ k,
we have

B = Ab
0 Ab−1

1 Ab−1
2 · · · Ab−1

n−1 An,
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which is a factorization of B as a product of b + (n − 1)(b − 1)+ 1 = 2+ (b − 1)n
irreducibles.

We can define several other important irreducible factors of B. When a1 > 1,
we define X1 = 1[b]b[b−1](b2)[b−1] · · · (ba1−1)[b−1](−ba1), and when a1 = 1, we define
X1 = 1[b](−b). We also define Y1 = ba1(−1)[e0]. For each 2 ≤ j ≤ k, we can define

X j = 1bb[b−1](b2)[b−1] · · · (ba j−1)[b−1](−ba j )

Y j = (ba j )(−ba j−1)(−ba j−2)[e j−2] · · · (−ba1)[e1](−1)[e0] .

The X j clearly sum to zero, while the Y j also do by Equation (5.1). Since they only
have one positive or one negative term, the X j and Y j are irreducible in B(G0) for
each 1 ≤ j ≤ k. When j = k, we have B = XkYk , which is a factorization of B as a
product of two irreducibles. For every 1 ≤ j < k, we have B = X j Y j B j , where

Bj = (ba j )[b−2](ba j+1)[b−1](ba j+2)[b−1] · · · bn·
(−bn)(−bak )[ek ] · · · (−ba j+1)[e j+1](−ba j )[e j−1] .

Examining the terms, we can see that

Bj = Ab−2
a j

Ab−1
a j+1 Ab−1

a j+2 · · · Ab−1
n−1 An

so Bj factors as a product of b − 2 + (b − 1)(n − 1 − a j ) + 1 = (b − 1)(n − a j )

irreducibles. Since B = X j Y j B j , we have that B factors as a product of 2+ (b − 1)

(n − a j ) irreducibles for each 1 ≤ j < k. Recounting all the factorizations of B we
have found, we have established that

L(B) ⊇ {2, 2+ (b − 1)(n − ak), . . . , 2+ (b − 1)(n − a1), 2+ (b − 1)n} .
To conclude the proof, we will show that B has no other factorization lengths.

In fact, one can show that B has no other factorizations beyond the ones we have
described, but this is beyond our needs and rather technical.

By Lemma 14, every irreducible that divides B has exactly one positive or one
negative term. Suppose X is an irreducible factor of B with at least two positive
terms and, hence, exactly one negative term. That negative term cannot be−1 because
the weight of the positive side is greater than 1. Hence, the negative term is −ba j

for some 1 ≤ j ≤ k + 1. So w(X) = ba j , and thus, X cannot contain bm for any
m > a j . We also know X cannot contain ba j because by irreducibility, we would have
X = ba j (−ba j ), contradicting the assumption that X had at least two positive terms.
So the positive terms of X are all powers of b smaller than ba j . Yet those terms must
sum to w(X) = ba j , meaning we need to use all the smaller powers of b, i.e., X = X j

= 1[b]b[b−1](b2)[b−1] · · · (ba j−1)[b−1](−ba j ). In particular, such an X would use all the
1’s from B, and thus, a given factorization of B can have at most one irreducible factor
with more than one positive term.

Let B = Z1 · · · Zr be a factorization of B. If each Zi has exactly one positive term,
then r = 2+ (b − 1)n, the number of positive terms in B. Suppose instead that some
Zi , say Z1, has more than one positive term. Then Z1 = X j for some 1 ≤ j ≤ k. All
the other Zi have exactly one positive term each, so r − 1 equals the number of positive
terms outside of Z1, i.e.,

r − 1 = 2+ (b − 1)n − (b + (b − 1)(a j − 1)) = 1+ (b − 1)(n − a j ).

Thus, r = 1+ n − (a j − 1) = 2+ n − a j , as desired.
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Theorem 17. Let b ≥ 2 be given and let G0 = {±bk | k ∈ N} be the set of positive
powers of b and their negatives. Let L be a finite, nonempty subset of N≥2, and write
L = {�1, . . . , �m}. Then L = L(B) for some B ∈ B(G0) if and only if for all 1 ≤ i ≤
j ≤ m we have �i ≡ � j mod (b − 1).

Proof. The “only if” is Theorem 15. For the “if,” the hypothesis tells us that for
each 1 ≤ i ≤ m, we have �i − �1 ≡ 0 mod (b − 1). Consider the set L ′ = {2, 2 +
�2 − �1, . . . , 2+ �m − �1}, which is a finite subset of 2+ (b − 1)N0. Hence, we can
choose n such that �m − �1 = (b − 1)n, and for each 1 ≤ j ≤ m − 1, we can now
choose a j such that

L ′ = {2, 2+ (b − 1)(n − am−2), . . . , 2+ (b − 1)(n − a1), 2+ (b − 1)n}.

By Lemma 16, there is a B ∈ B(G0) with L(B) = L ′. Now we can use the shifting
lemma �1 − 2 many times to shift B to some B ′ ∈ B(G0) with L(B ′) = L . We note
that to apply the shifting lemma, we only need to find some t > w(B), so we can take
t = bk for a suitably large exponent k.
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