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5.1 Introduction

The invention of calculus is one of the great intellectual and technical achievements of civi-
lization. Calculus has served for three centuries as the principal quantitative tool for the in-
vestigation of scientific problems. It has given mathematical expression to such fundamental
concepts as velocity, acceleration, and continuity, and to aspects of the infinitely large and
infinitely small—notions that have formed the basis for much mathematical and philosophical
speculation since ancient times. Modern physics and technology would be impossible without
calculus. The most important equations of mechanics, astronomy, and the physical sciences in
general are differential and integral equations—outgrowths of the calculus of the seventeenth
century. Other major branches of mathematics derived from calculus are real analysis, complex
analysis, and calculus of variations. Calculus is also fundamental in probability, topology; Lie
group theory, and aspects of algebra, geometry, and number theory. In fact, mathematics as we
know it today would be inconceivable without the ideas of calculus.

Isaac Newton and Gottfried Wilhelm Leibniz independently invented calculus during the
last third of the seventeenth century. But their work was neither the beginning of the story nor
its end. Practically all of the prominent mathematicians of Europe around 1650 could solve
many of the problems in which elementary calculus is now used—but providing their Huaonm-
dures with rigorous foundations required two more centuries.

The infinitely small and the infinitely large—in one form or another—are essential in cal-
culus. In fact, they are among the features which most distinguish that branch of mathematics
from others. They have appeared throughout the history of calculus in various guises: infinitesi-
mals, indivisibles, differentials, “evanescent” quantities, moments, infinitely large and infinitely
small magnitudes, infinite sums, and power series. Also they have been fundamental at both
the technical and conceptual levels—as underlying tools of the subject and as its foundational
underpinnings. We will give examples of these manifestations of the infinite in the earlier evo-
lution of calculus (seventeenth and eighteenth centuries).

52 Seventeenth-Century Predecessors of Newton and Leibniz

The Renaissance (ca. 1400-1600) saw a flowering and vigorous development of the visual arts,
literature, music, the sciences, and—not least—mathematics. It witnessed the decisive triumph
of positional decimal arithmetic, the introduction of algebraic symbolism, the solution by
radicals of the cubic and quartic, the free use if not full understanding of irrational numbers,



the introduction of complex numbers, the rebirth of trigonometry, the establishment of a re-
lationship between mathematics and the arts through perspective drawing, and a revolution
in astronomy, later to prove of great significance for mathematics. A number of these devel-
opments were necessary prerequisites for the rise of calculus, as was the invention of analytic
geometry by René Descartes and by Pierre de Fermat in the early decades of the seventeenth
century (see > Chapter 3). ,

The Renaissance also saw the full recovery and serious study of the mathematical works of

the Greeks, especially Archimedes’ masterpieces. His calculations of areas, volumes, and cen-
ters of gravity were an inspiration to many mathematicians of that period. Some went beyond
Archimedes in attempting systematic calculations of the centers of gravity of solids. But they
used the classical “method of exhaustion” of the Greeks, which was conducive neither to the
discovery of results nor to the development of algorithms. The temper of the times was such
that most mathematicians were far more interested in results than in proofs; rigor, declared
Bonaventura Cavalieri in the 1630s, “is the concern of philosophy and not of geometry [math-
ematics]” [10, p. 383]. To obtain results, mathematicians devised new methods for the solution
of calculus-type problems. These were based on geometric, algebraic, and arithmetic ideas,
often in interplay. We give two examples.

=m  Cavalieri

A major tool for the investigation of calculus problems was the notion of an indivisible. This
idea—in the form, for example, of an area as composed of a sum of infinitely many parallel
lines, regarded as atomistic—was embodied in Greek physical theory and was also part of
medieval scientific thought. Mathematicians of the seventeenth century fashioned indivisibles
into a powerful tool for the investigation of area and volume problems.

Indivisibles were used in calculus by Galileo and others in the early seventeenth century,
but it was Cavalieri who, in his influential Geometry of Indivisibles of 1635, shaped a vague
concept into a useful technique for the determination of areas and volumes. His strategy was
to consider a geometric figure to be composed of an infinite number of indivisibles of lower
dimension. Thus a surface consists of an infinite number of equally spaced parallel lines, and a
solid of an infinite number of equally spaced parallel planes. The procedure for finding the area
(or volume) of a figure is to compare it to a second figure of equal height (or width), whose
area (or volume) is known, by setting up a one-to-one correspondence between the indivisible
elements of the two figures and using “Cavalieri’s Principle”: if the corresponding indivisible
elements are always in a given ratio, then the areas (or volumes) of the two figures are in the
same ratio. For example, it is easy to show that the ordinates of the ellipse x*/a? + y?/b?=1are to
the corresponding ordinates of the circle x?+y?=a? in the ratio b:a (see B Figure 5.1), hence the
area of the ellipse = (b/a) x the area of the circle=mab.

==  Fermat

Fermat was the first to tackle systematically the problem of tangents. In the 1630s he devised
a method for finding tangents to any polynomial curve. The following example illustrates his
approach.

Suppose we wish to find the tangent to the parabola y=x* at some point (x, x?) on it. Let
x+e be a point on the x-axis and let s denote the “subtangent” to the curve at the point (x, x?)
(see @ Figure 5.2). Similarity of triangles yields x?/s=k/(s +€). Fermat notes that k is “adequal”
to (x+e)?, presumably meaning “as nearly equal as possible’, although he does not say so.
Writing this as k=(x+e)%, we get x*/s=(x+e)?/(s+e). Solving for s we have s=ex?/[(x+e)?

Bonaventura Cavalieri (1598-1647)

B Figure5.1 Area of anellipse

—x?] =ex?/e(2x +€) =x%/(2x+e). It follows that x*/s=2x+e. Note that x*/s is the slope of the
tangent to the parabola at (x, x?). Fermat now “deletes” the e and claims that the slope of the
tangent is 2x.

Fermat’s method was severely criticized by some of his contemporaries, notably Descartes.
They objected to his introduction and subsequent suppression of the “mysterious €”. Dividing
by e meant regarding it as not zero—but discarding e implied that it was zero. This'is inadmis-
sible, they rightly claimed. But Fermat’s mysterious e embodied a crucial idea: the giving of
a “small” increment to a variable. And it cried out for the limit concept, which was formally
introduced only about two hundred years later. Fermat, however, considered his method to be
purely algebraic.

The above examples give us a glimpse of the near-century of vigorous investigations in cal-
culus prior to the work of Newton and Leibniz. Mathematicians plunged boldly into almost vir-
gin territory—the mathematical infinite—where a more critical age might have feared to tread.
They produced a multitude of powerful, if nonrigorous, infinitesimal techniques for the solu-
tion of area, volume, and tangent problems. What, then, was left for Leibniz and Newton to do?



B Figure5.2 Finding the
tangent to a parabola

53 Newton and Leibniz: The Inventors of Calculus

In the first two thirds of the seventeenth century mathematicians solved calculus-type prob-
lems, but they lacked a general framework in which to place them. This was provided by New-
ton and Leibniz. Specifically, they

a. invented the general concepts of derivative and integral—though not in the form we see
them today. For example, it is one thing to compite areas of curvilinear figures and vol-
umes of solids using ad hoc methods, but quite another to recognize that such problems
can be subsumed under a single concept, namely the integral.

b. recognized differentiation and integration as inverse operations. Although several math-
ematicians before Newton and Leibniz noted the relation between tangent and area prob-
lems, mainly in specific cases, the clear and explicit recognition, in its complete generality,
of what we now call the Fundamental Theorem of Calculus belongs to Newton and Leibniz.

c. devised a notation and developed algorithms to make calculus a powerful computational
instrument.

d. extended the range of applicability of the methods of calculus. While in the past those
methods were applied mainly to polynomials, often only of low degree, they were now
applicable to “all” functions, algebraic and transcendental.

And now to some examples of the calculus as developed by Newton and by Leibniz. We should
note that theirs is a calculus of variables—which Newton calls “fluents”—and equations relating
these variables; it is n10t a calculus of functions. The notion of function as an explicit mathemati-
cal concept arose only in the early eighteenth century.

== Newton

Newton considered a curve to be “the locus of the intersection of two moving lines, one vertical
and the other horizontal. The x and y coordinates of the moving points are then functions of the
timet, specifying the locations of the vertical and horizontal lines respectively” [4, p. 193]. New-
ton’s basic concept is that of a “fluxion”, denoted by X; it is the instantaneous rate of change (in-
stantaneous velocity) of the fluent x—in our notation, dx / dt. The instantaneous velocity is not
defined, but is taken as intuitively understood. Newton aims rather to show how to compute x.

Isaac Newton (1642-1727)

The following is an example of Newton’s computation of the tangent to a curve with equa-
tion x° —ax?+axy —y>=0 at an arbitrary point (x, y) on the curve. He lets o be an infinitesimal
period of time. Then %o and yo are infinitesimal increments in x and y, respectively. (For, we
have distance = velocity x time = %o or o, assuming with Newton that the instantaneous
velocities X and y of the point (x, y) moving along the curve remain constant throughout the
infinitely small time interval o.) Newton calls Xo and yo moments, a “moment” of a fluent be-
ing the amount by which it increases in an infinitesimal time period. An infinitesimal was not
formally defined, but was understood to be an “infinitely small” quantity, less than any finite
quantity but not zero. Thus, (x+Xo0, y + yo) is a point on the curve infinitesimally close to (x, y).
In Newton’s words: “Soe y* if y¢ described lines [coordinates] bee x and y; in one moment, they
will bee x+%o and y+ o in y° next” [4, p. 193]. Substituting (x+%o, y+ 7o) into the original
equation and simplifying by deleting x*—ax?+axy—y® (which equals zero) and dividing by o,
we get:

3x%% — 2axx + ayX + axy — 3y ¥ + 3x%°0 —ax 20 + axyo — 3y 0+ x°0% —y°0% = 0.
Newton now discards the terms involving o, noting that they are “infinitely lesse” than the
remaining terms. This yields an equation relating x and y, namely

3x%% — 2axX + ayX + axy — 3y°y = 0.

From this relationship we can get the slope of the tangent to the given curve at any point (x, y):

This procedure is quite general, Newton notes, and it enables him to obtain the slope of the
tangent to any algebraic curve. .

The problem of what to make of the “0’s”—the “ghosts of departed quantities” [4, p. 294]—
remained, according to Bishop George Berkeley, who launched a famous critique. Are they
zero? Finite quantities? Infinitely small? Newton’s dilemma was not unlike Fermat’s a half-
century earlier.



O Figure5.3 Leibniz’ characteristic triangle
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mm  Leijbniz

Leibniz’ ideas on calculus evolved gradually, and like Newton, he wrote several versions, giv-
ing expression to his ripening thoughts. Central to all of them is the concept of “differential’,
although that notion had different meanings for him at different times.

Leibniz viewed a “curve” as a polygon with infinitely many sides, each of infinitesimal
length. (Recall that the Greeks conceived a circle in just that way.) With such a curve is as-
sociated an infinite (discrete) sequence of abscissas Xp Xp X3, ..., and an infinite sequence of
ordinates y;, y,, ys, ..., where (x; y;) are the coordinates of the points of the curve.

The difference between two successive values of x is called the “differential” of x and is
denoted by dx; similarly for dy. The differential dx is a fixed nonzero quantity, infinitely small
in comparison with x—in effect, an infinitesimal. There is a sequence of differentials associated
with the curve, namely the sequence of differences X;~X;_; associated with the abscissas x, x,,
X5, ... of the curve [4, pp. 258, 261]. H

The sides of the polygon constituting the curve are denoted by ds—again, there are infi-
nitely many such infinitesimal dss. This gives rise to Leibniz’ famous “characteristic triangle”
with infinitesimal sides dx, dy, ds satisfying the relation (ds)?= (dx)?+(dy)? (see B Figure 5.3).
The side ds of the curve (polygon) is taken as coincident with the tangent to the curve (at the
point x). Leibniz put it thus [9, pp. 234-235]:

» We have only to keep in mind that to find a tangent means to draw a line that connects two
points of the curve at an infinitely small distance, or the continued side of a polygon with
an infinite number of angles, which for us takes the place of the curve. This infinitely small
distance can always be expressed by a known differential like ds.

The slope of the tangent to the curve at the point (x, y) is thus dy/dx—an actual quotient of dif-
ferentials, which Leibniz calls the “differential quotient” (B Figure 5.3).

Here are two further examples of his calculus. To discover and “prove” the product rule for
differentials, he proceeds as follows:

d(xy)= A.x + dx)(y+ dy)—xy=xy +xdy + ydx + (dx)(dy)—xy =xdy+ydx. He omits
(dx)(dy), noting that it is “infinitely small in comparison with the rest” [4, p. 255].

As a second example, Leibniz finds the tangent at a point (x, y) to the conic x2+2xy=5:

Replacing x and y by x + dx and y + dy, respectively, and noting that (x+dx, y+dy) is a point on
the conic “infinitely close” to (x, y), we get

(x+ dx)* +2(x+ dx)(y+ dy)=5=x>+2xy.

Gottfried Wilhelm Leibniz (1646-1716)

Simplifying, and discarding (dx)(dy) and (dx)?, which are assumed to be negligible in compari-
son with dx and dy, yields 2xdx +2xdy + 2ydx =0. Dividing by dx and solving for dy/dx gives
dy/dx=(-x~-y)/x. This is of course what we would get by writing x?+2xy=>5 as y=(5-x%)/2x
and differentiating this functional relation. (Recall that Leibniz’ calculus predates the emer-
gence of the function concept.)

We see in these examples how Leibniz’ choice of a felicitous notation enabled him to ar-
rive very quickly at reasonable convictions, if not rigorous proofs, of important results. His
symbolic notation served not only to prove results but also greatly facilitated their discovery.

5.4 - The Eighteenth Century: Euler

Brilliant as the accomplishments of Newton and Leibniz were, their respective versions of
calculus consisted largely of loosely connected methods and problems, and were not easily
accessible to the mathematical public, such as that was. The first systematic introduction to
the Leibnizian differential calculus was given in 1696 by Guillaume de CHospital in his text
The Analysis of the Infinitely Small, for the Understanding of Curved Lines. Calculus was further
developed during the early decades of the eighteenth century, especially by the Bernoulli broth-
ers Jakob and Johann. Several books appeared during this period, but the subject lacked focus.
The main contemporary concern of calculus was with the geometry of curves—tangents, areas,
volumes, and lengths of arcs (cf. the title of U'Hospital’s text). Of course Newton and Leibniz
introduced an algebraic apparatus, but its motivation and the problems to which it was applied
were geometric or physical, having to do with curves. In particular, this was (as we already
noted) a calculus of variables related by equations rather than a calculus of functions.

A fundamental conceptual breakthrough was achieved by Euler around the mid-eighteenth
century. This was to make the concept of function the centerpiece of calculus. Thus calculus is
not about curves, asserted Euler, but about functions. The derivative and the integral are not
merely abstractions of the notions of tangent or instantaneous velocity on the one hand and of
area or volume on the other—they are the basic concepts of calculus, to be investigated in their
own right. But mathematicians of the eighteenth century did not readily embrace this centrality
of functions, especially since variables seemed to serve them well.



Leonhard Euler (1707-1783)

Power series played a fundamental role in the calculus of the seventeenth and eighteenth
centuries, especially in Newton’s and Euler’s. They were viewed as infinite polynomials with
little, if any, concern for convergence. The following is an example of Euler’s derivation of the
power-series expansion of sinx, employing infinitesimal tools with great artistry [4, p. 235]:

Use the binomial theorem to expand the left-hand side of the identity (cosz+isinz)"
= cos(nz) +isin(nz), and equate the imaginary part to sin(nz). We then get:

- sin(nz)=n AOOvai (sinz) I_H.w (n-1)(n INV /3 _H_ AOOva?u Amwﬁvu (CR)
+T?|C?|B?luv?IAV\mgﬁoOvai (sinz)’ —....

Now let n be an infinitely large integer and z an infinitely small number (Euler sees no need to
explain what these are). Then

SmNnrmENnN“w?ld?lwvuswvb?lcﬁs.lwv?lwv?lb =n’...

(again no explanation from Euler, although of course we can surmise what he had in mind).
Equation 5.1 now becomes

mE?Nvnﬁ|Auuva\m_+?mva\m_l

Let now nz=x. Euler claims that x is finite since n is infinitely large and z infinitely small. This
finally yields the power-series expansion of the sine function:.

sinx =x—x> /3! +x°/5!—... . It takes one’s breath away!

'This formal, algebraic style of analysis, used so brilliantly by Euler and practiced by most
eighteenth-century mathematicians, is astonishing. It accepted as articles of faith that what is
true for convergent series is true for divergent series, what is true for finite quantities is true
for infinitely large and infinitely small quantities, and what is true for polynomials is true for

power series. Mathematicians put their trust in such broad principles because 10r the most part
they yielded correct results.

55 A Look Ahead: Foundations

Mathematicians of the seventeenth and eighteenth centuries realized that the subject they were
creating was not on firm ground. For example, Newton affirmed of his fluxions that they were
“rather briefly explained than narrowly demonstrated” [4, p. 201]. Leibniz said of his differen-
tials that “it will be sufficient simply to make use of them as a tool that has advantages for the
purpose of calculation” [4, p. 265]. The Berlin Academy offered a prize in 1784, hoping that “it
can be explained how so many true theorems have been deduced from a contradictory sup-
position [namely, the existence of infinitesimals]” [6, p. 41]. Lagrange made an elaborate—but
essentially misguided—response to this challenge, although his work could be justified in the
contemporary setting.

In the late eighteenth and early nineteenth centuries, the work of Lagrange, Joseph Fourier,
and others forced mathematicians to confront the lack of rigor in calculus. Here is Niels-Henrik
Abel on the subject [11, p. 973]:

» Divergent series [employed by Newton, Euler, and others] are the invention of the devil.
By using them, one may draw any conclusion he pleases, and that is why these series have
produced so many fallacies and so many paradoxes.

Starting in 1821 and continuing for about half a century; a series of mathematicians, including

Augustin-Louis Cauchy, Bernard Bolzano, Richard Dedekind, and Karl Weierstrass, supplied

calculus with foundations, essentially as we have them today. The main features of their work

were:

I. The emergence of the notion of limit as the underlying concept of calculus.

II. The recognition of the important role played—in definitions and proofs—by inequalities.

I11. The acknowledgement that the validity of results in calculus must take into account ques-
tions of the domain of definition of a function. (In the eighteenth century a theorem of
calculus was usually regarded as universally true by virtue of the formal correctness of the
underlying algebra.)

IV. The realization that for a logical foundation of calculus one must have a clear understand-
ing of the nature of the real number system, and that this understanding should be based
on an arithmetic rather than a geometric conception of the continuum of real numbers.

The work on foundations of calculus did away “for good” with infinitesimals—used by Cauchy
and his predecessors for over two centuries (two millennia, if we consider the Greek contri-
butions). In 1960, infinitesimals were actually brought back to life, as genuine and rigorously
defined mathematical objects, in the “nonstandard analysis” conceived by the mathematical
logician Abraham Robinson—but that is another story!
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1. Déscribe some of Pascal’s, Roberval’s, or Wallis’ work in calculus. . 1

2. Discuss the priority dispute between Newton and Leibniz concerning the invention of

calculus.

Write a short essay on Archimedes’ Method.

Discuss Euler’s use of power series.

Describe the essential elements in Lagrange’s algebraic approach to calculus.

Discuss Bishop George Berkeley’s critique of Newton’s calculus.

Write an essay on the “Arithmetization of Analysis”. See [1, 4, 8, 11].

. Discuss some of the errors in calculus in the late eighteenth and early nineteenth centu-
ries resulting from the lack of proper foundations. See [1, 5, 8].

9. Write a brief essay on the basic ideas of nonstandard analysis. See [2-4, 7].
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