Copyright © 1995. Oxford University Press. All rights reserved.

Descartes’s Géométrie 89

principal lines and the other data of the problem. If we now set, according to
the problem, CB - CF =CD - CH, we obtain an equation of degree two in x and
of degree two in y. This completes the second step of the solution. The final
step in the solution is constructing the problem. To this end we assign an
arbitrary value to y, and thus we obtain an equation which is quadratic in x.
The construction of the solution of a quadratic equation is not a problem as it
has already been shown how to carry it out. The locus of points is then
constructed by taking arbitrary values for y and constructing the correspond-
ing values for x:

If then we should take successively an infinite number of different values for the line y,
we should obtain an infinite number of values for the line x, and therefore an infinity of
different points, such as C, by means of which the required curve could be drawn.
(SL 313)

Pappus’s problem can be generalized to an arbitrary number n of lines
(n=3). The case for three lines is simply the case for four lines with the third
and fourth lines coinciding,i.e. CB-CF=CD?. Letn >4. Assume that![,,. . .,

I, are lines given in position, and f,, . . ., §, are fixed angles. Let s denote an
arbitrary line segment. The problem of Pappus for # lines consists of finding
the locus of points C such thatifd,, . . ., d, are the segments drawn from C to
I,,..., 1, making angles §,, ..., B,, then
{dl-...-dk=dkﬂ.-~-.dn if n=2k,
di-...cdy=dpy . dy s ifn=2k-1.

The solution for four lines easily generalizes to n lines. Indeed, each distance d,
from C(x, y) to the line /; making an angle §3; is expressed by + A,x +B,y+C,.
Thus the equation of the general locus is

K 2k
Il (+tAxtBy+C)= [] (£Ax+tBy+C) if n=2k,
i=1 i=k+1

K 2%k-1

11 (iAixiB,-y_-’r_-Ci):I: I (iAiijiyi—Ci):‘-s ifn=2k—1.
i=1 i=k+1

Thus for 2k—1 and 2k lines, we end up with an equation of degree k in x and
degree k in y.

It should be noted that the generalization of the problem to an arbitrary
number of lines was already in Pappus. However, the ancients could not make
much sense of it since they could not make sense geometrically of the product
of four or more lines.* Descartes’s new calculus, by interpreting products of
line segments as yielding line segments, allows him to bypass the issue with
finesse.
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6.2.3. Descartes’s classification of curves

In the opening part of Book II, Descartes recalls approvingly (‘The ancients
have very rightly remarked . .. (SL 315)) Pappus’s distinction of problems
between plane, solid, and linear problems. Plane problems are those that can
be constructed by means of straight lines and circles; solid problems those that
can be constructed by making use of conics; and linear problems those which
require more composite lines. This last category of problems is called linear
‘for lines other than those mentioned are used in the construction, which have
a varied and more intricate genesis, such as the spirals, the quadratrices, the
conchoids, and the cissoids, which have many marvellous properties’ (Pappus
1933, p. 38). However, Descartes continues, this latter category must be
further analysed:

I am surprised, however, that they did not go further, and distinguish between different
degrees of these more complex curves, nor do I see why they called the latter
mechanical, rather than geometrical. (SL 315)

Descartes then endeavoured to find an explanation for why the ancients made
the distinction between geometrical and mechanical curves the way they did.
In the process of doing so, he claimed that there were misgivings among the
ancients about whether to accept the conic sections as fully geometrical. In any
case, he suggests that the ancients had put together in the same category
spirals, quadratrices, conchoids, and cissoids® because in their inquiries they
happened to encounter first the first two, which are truly mechanical, and only
afterwards the conchoid and the cissoid which are, in Descartes’s opinion,
acceptable.

Perhaps what stopped the ancient geometers from admitting curves more complex
than the conic sections is that the first curves to which their attention was attracted
happened to be the spiral, the quadratrix, and similar curves, which really belong only
to mechanics, and are not among those that I think should be included here, since they
must be conceived of as described by two separate movements whose relation does not
admit of exact determination. Yet they afterwards examined the conchoid, the cissoid,
and a few others which should be accepted; but not knowing much about their
properties they took no more account of these than of the others. (SL 316-17)

This section of Descartes’s text was analysed very carefully by Molland, who
concluded that Descartes’s exposition was ‘a misconstrual of the ancient
distinction between geometrical and instrumental’. For example, in connec-
tion with the passage quoted above, Molland says:

His third attempted explanation was that the spiral and quadratrix, which were not
geometrical, were discovered first and only afterwards the acceptable conchoid and
cissoid. But, as we have seen, there was no ancient compunction about admitting the
spiral and little about the quadratrix, and there could well have been more doubt about
the geneses of the conchoid and cissoid. (Molland 1976, p. 35)
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However, the misconstrual was instrumental, concludes Molland, in that ‘his
faulty exegeses allowed him [Descartes] to introduce more naturally his own
basis for geometry’. What Molland’s analysis leaves unanswered is whether
Descartes is completely responsible for the misconstrual of whether he is
sharing a reading of the ancients which was commonplace in the contempor-
ary mathematical literature. I shall have something to say about this below
when commenting on several passages from Clavius. Two questions await us
next. Which curves did Descartes admit? Why did he reject others? These two
questions are answered in the next two sections.

Geometrical and mechanical curves

Descartes’s proposal is that by ‘geometrical’ should be understood what is
precise and exact, and by ‘mechanical’ what is not so. The curves to be
admitted in geometry are given by a kinematical criterion:

... nevertheless, it seems very clear to me that if we make the usual assumption that
geometry is precise and exact, while mechanics is not; and if we think of geometry as the
science which furnishes a general knowledge of the measurements of all bodies, then we
have no more right to exclude the more complex curves than the simpler ones, provided
they can be conceived of as described by a continuous motion or by several successive
motions, each motion being completely determined by those which precede; for in this
way an exact knowledge of the magnitude of each is always obtainable (SL 316)

The kind of regulated continuous motions that Descartes has in mind are
illustrated by the generation of curves provided by the machine shown in
Fig. 6.4. It consists of several rulers linked together. YZ is fixed, and Y is a
pivot so that XY can rotate. Perpendicular to XY we have a fixed ruler BC and
sliding rulers DE, FG (etc.—the machine could be extended indefinitely).
Perpendicular to YZ are the sliding rulers CD, EF, GH (etc.). In the initial
position YX coincides with YZ. As YX rotates counterclockwise, the fixed
ruler BC pushes the sliding ruier CD which, in turn, pushes the sliding ruler
DE (etc.). All the curves described by the (moving) points B, D, F, H (etc.) are
admissible and are called geometrical. This is by no means the only type of
machine considered by Descartes, and in fact he adds that many similar types
of machine could bé¢ considered. However, a unifying feature of all the curves
generated by such instruments is that they all have an algebraic equation:

I could give here several other ways of tracing and conceiving a series of curved lines,
which would be more and more complex by degrees to infinity, but I think the best way
to group together all such curves and then classify them in order, is by recognizing the
fact that all points of those curves which we may call ‘geometric’, that is, those which
admit of precise and exact measurement, must bear a definite relation to all points of a
straight line, and that this relation must be expressed by means of a single equation.
(SL 319)

This allows Descartes to classify curves by making use of the degree of their
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N

equation. Descartes classifies curves by gender, curves of gender 1 being the
circle and the conics, curves of gender 2 those which have equations of degree 3
or 4, curves of gender 3 those which have equations of degree 5 or 6, and so
forth. (See Grosholz (1991, Chap. 2) for an analysis of the notion of gender.) It
should be remarked that Descartes never says explicitly that all the algebraic
cquations define a geometrical curve although, as Bos (1981) has argued, he
implicitly assumed this.

We have already encountered two different types of curve construction: by
points, as in the solution to Pappus’s problem, and by regulated motions.
However, not all motions or all pointwise constructions are to be allowed in
geometry. Let us begin with the unacceptable motions. I have quoted above a
passage where Descartes claims that the quadratrix and the spiral should be
rejected because they are generated by two different motions ‘between which
there is no relation (raport) that can be measured exactly’. This is exactly the
same criticism that was raised, according to Pappus, by Sporus (third century
AD) against the use of the quadratrix in the squaring of the circle.

The quadratrix is a curve which is generated by the intersection of two
segments, one moving with uniform rectilinear motion and the other with
uniform circular motion. Let ABCD be a square, and BED the quadrant of a
circle with centre A (see Fig. 6.5). Let AB rotate uniformly clockwise towards
AD, and let BC move with uniform rectilinear motion towards AD, keeping
parallel to AD, in such a way that the two lines AB and BC start moving at the
same time and end their motion coinciding with AD at the same time. The
locus of points described by the intersection of the two moving segments is the
quadratrix.
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B C
E
F
A G D
Fig. 6.5.

The quadratrix can be used to trisect the angle but its principal use, as the
name indicates, was in attempts to square the circle. However, this use was
severely criticized, even in ancient times. In particular, Pappus recalls
approvingly Sporus’s objections that, in order to adjust the speed of the
motions as required and to determine the point G on the quadratrix, one
already needs to know what is sought—the quadrature of the circle.® Pappus
concluded by stating that the construction of the line belonged to mechanics.

One possible way out of the situation could have been to attempt a
construction of the quadratrix which required no independent motions and
which could be considered more geometrical.” This attempt was made by
Clavius, in his Commentaria in Euclidis elementa geometrica, in an appendix to
Book VI entitled ‘De mirabili natura lineae cuiusdam inflexae, perquam et in
circulo figura quotlibet laterum aequalium inscibitur, & circulus quadratur, &
plura alia scitu iucundissima perficiuntur’ (Clavius 1591, p. 296).8 I claim this
text to be the source of the reflections on pointwise constructions contained in
the Géométrie. In it Clavius proposes a pointwise construction of the
quadratrix similar to those given for the conic sections, which is therefore,
Clavius claims, geometric:

And although the said authors endeavoured to describe such line [the quadratrix] by
two imaginary motions of two straight lines, in which thing they beg the principle, so
that on that account the line is rejected by Pappus as useless and not describable;
however, we will describe it geometrically through the determination of however many
of its points through which it must be drawn, just as it is commonly done in the
description of the conic sections. (Clavius 1591, p. 296)°

The construction given by Clavius can be summarized as follows. Divide the
arc DB and the sides AD and BC into 2" equal parts for n as large as you please
(the larger the n, the more accurate the description). Figure 6.6 shows the
situation for n=3. Thus we have seven points on DB, AD, and BC. Connect by
dashed lines the corresponding points on AD and BC, and the point A to the
seven points on the arc DB. The points of intersection are points on the
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quadratrix. By refining the partition on the arc and on the sides, Clavius
claims to approximate the quadratrix more and more precisely. Moreover, he
implicitly assumes that he will be able, with the single exception of the point E,
to obtain in this fashion all the points on the quadratrix. He continues by
noticing that E cannot be found in such a way (i.e. geometrically) since, when
the two motions are completed, the two segments no longer intersect. In order
to take care of this case, he resorts to a trick.'® Consider the segment AF on
AD, and bisect it continually until we reach a very small part of it, say AG.
Similarly, bisect the arc BI in the same number of parts, and let BK be the arc
thus obtained. Now, construct BL, BN, AM equal to AG. Connect G and L,
M and N, A and K by dashed lines. The segment AK intersects GL at H. If MP
is taken to be equal to GH, and the quadratrix is extended uniformly to P, then
the curve must pass through E. Indeed, Clavius argues, one only needs to
‘squeeze’ E between H and P to an arbitrary degree of accuracy.

Clavius also offers a different construction in which the approximation does
not require the curve to be extended below the side AB, and in which all the
lines in the construction meet at right angles (whereas in the previous
construction the radii originating from A intersected the segments originating
on AD at different angles).

It should be remarked that Clavius does not realize that there are an
(uncountable) infinity of points (not just E) that can only be approximated,
since the construction he has given will produce a (countably) dense set of
points, but not all the points on the quadratrix. However, Clavius is convinced
he has given a geometric construction of the curve which uniformly constructs
all the points on the curve:

This is therefore the description of the quadratrix, which in a certain sense can be called
geometrical, just as the description of the conic sections, which are also made by points,
as are handed down by Apollonius, are called geometrical, although in truth they are
more liable to error than our description is. This is a consequence of the determination
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of several proportional lines which are necessary for their description and which is not
an issue in the description of the quadratrix. On which account, unless someone
wanted to reject the whole doctrine of conic sections as useless and not geometrical
(which I think nobody will do since the best Geometers employed the conic sections in
their demonstrations. [...]) he is compelled to admit that our description of the
quadratrix is in a certain sense geometrical. Add that the conchoid, through which
Nicomedes sharply searches two mean proportional lines, is also described by points,
as we say in the book of mensurations. (Clavius 1591, p. 297)!!

It is hard to overestimate the above passage for an understanding of what
Descartes is up to in Book 11 of the Géométrie. The following points should be
stressed:

(1) Clavius claims his construction by points to be geometrical,

(2) indeed, he claims it to be more geometrical than the construction by points
given for the conics, which is more liable to error than his;

(3) however, constructions of conic sections are to be considered geometrical;

(4) he stresses the similarity between his construction and that given for the
conchoid.!?

Notice that Clavius, following Pappus, rejects the construction by double
motion as mechanical, and that by arguing for the geometrical nature of
constructions involving conic sections he unwittingly acknowledges that the
point might be challenged. This is in line with Descartes’s rejection of the
quadratrix and with Descartes’s doubts as to whether the ancients accepted as
geometrical the solutions obtained by means of conic sections.

A consequence of points (1) to (4) is that, in a certain sense, the quadrature
of the circle can be effected geometrically. However, as I shail argue in the next
section, Descartes could not accept this consequence. In the following passage,
although not mentioning Clavius, Descartes claims that there is a difference
between the construction by points for the geometrical curves (such as the
conics and the conchoid) and that used for the spiral and similar curves (i.e. the
quadratrix). Only special points can be constructed on the latter curves.

It is worthy of note that there is a great difference between this method in which the
curve is traced by finding several points upon it, and that used for the spiral and similar
curves. In the latter not any point of the required curve may be found at pleasure, but
only such points as can be determined by a process simpler than that required for the
composition of the curve. Therefore, strictly speaking, we do not find any one of its
points, that is, not any one of those which are so peculiarly points of this curve that they
cannot be found except by means of it. On the other hand, there is no point on these
curves which supplies a solution for the proposed problem that cannot be determined
by the method I have given. And since this way of tracing a curved line by determining
several of its points at random, applies only to those curves which can also be described
by a regular and continuous motion, we should not reject it entirely from geometry.
(SL 339-40)
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Thus Descartes accepts (3) but rejects claims (1), (2), and (4) of Clavius’s
argument. Of course, the reader might still question whether Descartes had in
mind Clavius’s passages when writing the above. I shall show this to be the
case in the next section.

In conclusion to this section let me remark, following Bos, that Descartes
holds that the three classes of curves generated by the following three
categories are extensionally equivalent (although some of the implications are
only implicit in the Géométrie):

(1) curves generated by regulated continuous motions;
(2) curves generated by (uniform) pointwise construction;
(3) curves given by an algebraic equation.

Mechanical curves and the quadrature of the circle

The extent of mechanical curves known to Descartes at the time of the
publication of the Géométrie was very limited. Indeed, in the Géométrie he
explicitly mentions only the quadratrix and the spiral as examples of
mechanical curves. We have seen that Descartes rejects them because ‘they are
considered as described by two separate movements, between which there is
no relation (raport) that can be measured exactly’. Moreover, he mentions that
only special points can be constructed on the mechanical curves. Bos (1981,
p. 325) remarks that ‘there is no evidence that Descartes before 1637 actively
studied transcendental curves other than the quadratrix and the spiral’.
However, this is not correct. Descartes studied at least one other transcenden-
tal curve before 1637, the cylindrical helix, and explicitly rejected it as
mechanical.

In addition to the two criteria for rejecting mechanical curves from
geometry mentioned above, Descartes invokes another criterion when
discussing construction by strings:

For although one cannot admit [in geometry] lines which are like strings, that is, which
are sometimes straight and sometimes curved, because the proportion between straight
lines and curved lines is not known and I also believe it cannot be known by men, so one
cannot conclude anything exact and certain from it. (SL 340-1)!3

The idea that there is no proportion between curved and straight lines, or
motions, goes back at least to Aristotle’s Physics. In Bos’s opinion, the
Aristotelean dogma is the very foundation of Descartes’s distinction between
geometrical and mechanical curves:

Thus the separation between the geometrical and non-geometrical curves, which was
fundamental in Descartes’s vision of geometry, rested ultimately on his conviction that
proportions between curved and straight lengths cannot be found exactly. This, in fact,
was an old doctrine, going back to Aristotle. The central role of the incomparability of
straight and curved in Descartes’s geometry explains why the first rectifications of
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algebraic (i.e. for Descartes geometrical) curves in the late 1650s were so revolutionary:
they undermined a cornerstone of the edifice of Descartes’s geometry. (Bos 1981,
pp- 314-15)

Although T do not deny that Descartes (and many of his contemporaries)
believed in the Aristotelean dogma,!* I cannot but puzzle over the fact, that,
although the algebraic rectification of algebraic curves was essential in
destroying the Aristotelean dogma, it did not really undermine the
foundations of Descartes’s Géométrie; nor, to my knowledge, did anybody at
that time claim this to be the case. This suggests that the real motivation and
foundation for Descartes’s exclusion of the spiral, quadratrix, ‘and the like’,
may be based on something else. I suggest this something else to be Descartes’s
parti pris—that the quadrature of the circle is impossible geometrically. The
following passage, taken from a letter to Mersenne dated 13 November 1629,
points to the likelihood of my hypothesis:

Mr. Gaudey’s invention is very good and very exact in practice. However, so that you
will not think that I was mistaken when I claimed that it could not be geometric, I will
tell you that it is not the cylinder which is the cause of the effect, as you had me
understand and which plays the same role as the circle and the straight line. The effect
depends on the helix which you had not mentioned to me, which is a line that is not
accepted in geometry any more than that which is called quadratrix, since the former
can be used to square the circle and to divide the angle in all sorts of equal parts as
precisely as the latter can, and has many other uses as you will be able to see in Clavius’s
commentary to Euclid’s Elements. For although one could find an infinity of points
through which the helix or the quadratrix must pass by, however one cannot find
geometrically any one of those points which are necessary for the desired effects of the
former as well as of the latter. Moreover, they cannot be traced completely except by
the intersection of two movements which do not depend on each other, or better the
helix by means of a thread [filet] for revolving a thread obliquely around the cylinder it
describes exactly this line; but one can square the circle with the same thread, so
precisely that this will not give us anything new in geometry. (AT, Vol. 1, pp. 70-1)!?

In this long and dense passage, which leaves no doubt as to Descartes’s
knowledge of Clavius’s work on the quadratrix, Descartes considers explicitly
the cylindrical helix which he does not mention in the Géométrie. Moreover, he
gives several reasons for excluding curves like the quadratrix and the helix. We
are already familiar with some of them. Both curves are such that only special
points can be constructed on them. The quadratrix is excluded on account of
its being generated by two independent motions, and the helix is excluded
because it is generated by a filet (‘thread’). Descartes ultimately excludes them
because both curves allow us to square the circle (pource qu’elle sert a quarrer
le cercle; he also mentions once the division of an angle into arbitrary parts).
He adds that these curves do not give us anything new in geometry. In a sense
they ‘beg’ the question. This is simply Pappus’s criticism.

If we now consider, in addition to the points already made, that the curves
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which had been used in Antiquity (and which passed down to the seventeenth
century) in attempts to square the circle were the spiral, the quadratrix, and
the cylindrical helix (as Iamblichus reports, quoted in Heath (1921, Vol. I,
p- 225)), I think one can confidently claim that one of the unifying criteria
which is at work in Descartes’s mind, when he excludes the mechanical curves,
is that they can be used to square the circle.

The point about the impossibility of squaring the circle is reiterated in a
letter to Mersenne dated 31 March 1638. Descartes states:

For, in the first place, it is against the geometers’ style to put forward problems that
they cannot solve themselves. Moreover, some problems are impossible, like the
quadrature of the circle, etc. (AT, Vol. I1, p. 91)

How could Descartes have been so confident? It was not until 1882 that
Lindemann was able to prove that there is no algebraic quadrature of the
circle. Moreover, the discussion on whether the quadrature of the circle was
possible was still very lively in Descartes’s period. For example, Mersenne
devotes the ‘Question X VI’ of his Questions théologiques (1634) to the topic ‘La
quadrature du cercle est-elle impossible?”. He remarks how split is the
mathematical world over this very question:

This problem is extremely difficult, for one can find excellent geometers who claim that
it is not possible to find a square whose surface is equal to that of the circle, and others
who claim the opposite. (Mersenne 1634, p. 275)

Mathematicians have often been divided over the status of various
mathematical propositions (just think of the problem of the independence of
the axiom of choice, or the continuum hypothesis from Zermelo-Fraenkel set
theory). But what is surprising is to find Descartes basing his whole
‘foundational’ enterprise on the assumption that the circle cannot be squared.
How did he arrive at such a conclusion?

We have evidence that Descartes worked on the problem of squaring the
circle. In the tenth volume of the Adam-Tannery edition there is a fragment
(number 6, dated 1628 or earlier) which purports to give the best way to effect
the quadrature of the circle. Interestingly, the quadrature of the circle is
obtained by constructing an infinite sequence of points which converges
towards a certain point. What I want to emphasize here is that we have an
approximation argument to a point which is akin to the determination of the
point E in Clavius’s argument for the pointwise construction of the
quadratrix.*® Since the fragment claims to have provided the best possible
quadrature of the circle, it is quite likely that Descartes convinced himself that
no quadrature of the circle was possible unless it involved infinite
approximations of the type we have considered.

How does the criterion that there is no exact relation between curved and
straight lines relate to the impossibility of the quadrature of the circle being
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effected geometrically? The quadrature of the circle is equivalent (by
Archimedes’ proof) to the rectification of the circumference. Thus what
suffices for Descartes’s exclusion of the mechanical curves he actually
mentioned before 1637 and in the Géométrie is that there is no exact
proportion between the circumference and the radius—that the circumference
cannot be algebraically rectified. A correct guess, but an unproven one at that.
However, this is why the algebraic rectification of curves leaves unthreatened
the Cartesian distinction stated in the Géométrie between geometrical and
mechanical curves. Only an algebraic rectification of the circumference would
have destroyed the rationale for Descartes’s position.

6.2.4. Descartes’s tangent method

The class of curves that Descartes called geometrical turned out to be an
extremely natural and fruitful one to isolate. Moreover, the fact that each such
curve can be described by an algebraic equation allows Descartes to solve in all
its generality the problem of drawing a tangent to an arbitrary point on each
such curve, or-—which is the same—drawing a normal to each point. Let us
follow Descartes’s example. Suppose we are given an ellipse having the equation

x*=ry—(ry*/q), (6.10)

where r is the latus rectum and g the major axis.

We wish to draw a normal at an arbitrary point C on the curve (see Fig. 6.7).
According to the general strategy for solving problems described in Section
6.2.1, we begin by considering the problem solved and by naming the lines in
question. Let AM =y, CM =x; the normal PC=s, PA=v, and PM=0v—y.
We now look for the relevant equations. Since CMP is a right triangle, we have

s?=x2+v% 20y +yi (6.11)

Fig. 6.7.

We impose the condition that the point C must lie on the curve. From (6.10)
and (6.11), we obtain

ry—(ry?/q)=s*—v*+2vy—y?,

and by simple algebraic manipulations
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y2=[qQuv—r)/(g—7)]y+[q(s*—v?))/(g—r). (6.12)

From (6.12), we proceed to determine r or s. We must exploit the other piece of
information at our disposal, that CP must be normal. If CP is not normal then
the circle with radius PC will cut the curve in C as well as in another point E
different from C. The condition of normality is thus equivalent to the
condition that the two points C and E must coincide in one point or,
algebraically, there is a double root of equation (6.12). If (6.12) has a double
root, say e, then it is of the form (y—e)2=0, that is

yi=2ye—e?. (6.13)

By equating coefficients in (6.12) and (6.13), we obtain (2qv— gr)/(g —r)=2e,
and solving for v we obtain v=[2e(q—r)+qrl/2q, and since e=y,
v=[y(g—r)/ql+(r/2).

The third step of the solution is constructing v. However, the construction is
routine and Descartes leaves it out. What should be remarked upon-is the
extreme generality of the method (which applies to any algebraic curve), the
essential role played by the equation of the curve, and the absence of
infinitesimal considerations in the solution to the problem.’

6.2.5. Some general features of the Géométrie
Descartes’s programme

The first book of the Géométrie has shown through the paradigmatic solution
of Pappus’s problem for four lines the main strategy for solving problems.
Which problems can be solved? Those which admit a geometrical solution, a
solution which makes use only of geometrical curves. The class of geometrical
curves is described (by no means univocally) in Book II, which delimits the
ontological domain of the Géométrie. But the problems treated in Book I were
plane problems, ones which could be solved by the intersection of straight lines
and circumferences. It is in Book III that Descartes shows how the approach is
to be generalized, not only to solid problems but to arbitrary problems. An
acceptable solution is obtained only when we employ the simplest curve that
can be used to solve the problem. Descartes is explicit about this:

While it is true that every curve which can be described by a continuous motion should
be accepted in geometry, this does not mean that we should use at random the first one
that we meet in the construction of a given problem. We should always choose with
care the simplest curve that can be used in the solution of a problem. (SL 369-70)

The criterion of simplicity is purely algebraic. The complexity of the curve is
measured by the degree of the equation by which they can be expressed. Thus
in Book III Descartes shows how solid and supersolid problems (i.e. of degree
3 or 4) can be solved through the intersections of a circle and a parabola (a
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curve of degree 2), and in general how problems of degree 2n— 1 and 2n can be
solved through the intersection of a circle and a curve of degree n. The grand
vision of Descartes consists of a classification of all geometrical problems by
means of the simplest curves that can be used to solve them.*® This, in turn,
allows Descartes to claim that his method is better than any other that has
been proposed, and that his work marks, if I am allowed the expression, the
‘end of geometry’. Writing to Mersenne in December 1637, he says:

Moreover, having determined as I have done in every type of question all that can be
done, and shown the means to doit, I claim that one should not only believe that I have
done something more than those who have preceded me but also one should be
convinced that our descendants will never find anything in this subject that I could not
have found as well as they, if I only bothered to look for it. (AT, Vol. II, p. 480)

Algebra and Geometry

The issue of the relationship between analytic objects (equations) and
geometrical objects (curves) is crucial for evaluating the Géométrie and has
given rise to two different interpretative positions in the literature. Bos, Boyer,
Grosholz, Lachterman, and Lenoir have claimed that algebra is simply a tool
in the economy of the Géométrie. For example, Bos has argued at length that
the equation of a curve is not allowable for Descartes as a genuine
representation of a curve:

The conclusion from these facts must be that for Descartes the equation of a curve was
primarily a tool and not a means of definition or representation. It was part of a whole
collection of algebraic tools which in the Géométrie he showed to be useful for the study
of geometrical problems. The most important use of the equation was in classifying
curves into classes and in determining normals to curves. Here the equation must
actually be written out. In many other cases Descartes could get through his
calculations about problems without writing the equation of the curve explicitly. (Bos
1984, p. 323)

Moreover, once the equation is found we must always construct the roots
geometrically, that is, the equation is never the last step of the solution.

Bos’s position has been challenged by Giusti, who claims that for Descartes
‘the curve is the equation’ and speaks in this connection about a ‘revolutionary
position’. Giusti emphasizes the algebraic component of the Géométrie which
allows Descartes to give general and uniform solutions to a variety of
problems central to his programme. Giusti grants the presence in the
Géométrie of more ‘constructive’ strands, but claims that the identification of
the curve with its algebraic equation is at the core of the Cartesian programme.
He then claims that the ‘constructive’ elements (e.g. the appeal to machines for
generating curves, or the geometric construction of roots) play more a
rhetorical than a scientific role in the economy of the Géométrie:
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By contrast, our thesis is that from the mathematical point of view these [constructive]
representations have a secondary role with respect to the algebraic equation. Thus one
needs to justify their presence in Descartes’s work, and their role in the economy of the
Géométrie. In our opinion, their role is more rhetorical than scientific. (Giusti 1987,
p. 429)

The Géométrie is a striking work in which old geometrical paradigms and
new algebraic strands intermingle at the same time. Determining the exact
balance between the two will prove to be one of the long-standing
interpretative issues in the debate on Descartes’s contribution to mathematics.

Finitism

Generations of scholars (see for example Vuillemin 1960; Belaval 1960;
Costabel 1985) have remarked on Descartes’s finitism. We have seen some
explicit examples of Descartes’s finitism. His rejection of the mechanical
curves is grounded in the idea that their construction involves us in infinite
processes of approximation which cannot be exact (geometrical). His method
of tangents also exemplifies his careful avoidance of infinitesimal arguments.
However, one should not make the mistake of believing that Descartes simply
does not have the techniques to engage in ‘infinitistic’ mathematics. His letters
show how well versed he was in infinitesimalist techniques, as his solutions to
problems involving the cycloid and Debeaune’s problem abundantly show
(Milhaud 1921; Vuillemin 1960; Belaval 1960; Scriba 1960-1; Costabel 1985).
What is difficult to evaluate is how the limitation to finitary mathematics in the
Géométrie fits into the Cartesian project. Some interpretations seem to imply
that infinitistic mathematics will never be granted ‘droit de cité’ because they
involve procedures ‘que sa [Descartes’s] méthode récuse’ (Vuillemin 1960,
p. 9). Recently, Costabel suggested that the elaboration of an incontestable
finitary mathematics is only a first step towards the more complex goal of
developing ‘infinitary’ mathematics. Descartes’s restriction to finitary mathe-
matics in the Géométrie is only a sign that he did not want to engage
prematurely in infinitary mathematics (Costabel 1985, p. 38).

Belaval’s interpretation sees in Descartes’s refusal to admit infinitary
mathematics in the Géométrie the clearest sign of how Tesprit de la méthode
cartésienne [. . .] s’'oppose a celui de la méthode leibnizienne’ (Belaval 1960,
p. 301). I shall come back to the problem of Cartesian finitism and Belaval’s
interpretation in Section 6.3, on revolutions.

Direct proofs and proofs by contradiction

The Géométrie is a work of its time. For example, the ‘constructive’
representations of curves contained in it are in direct line of succession of a
long tradition of treatises on the construction of curves by the use of strings
and other mechanical means (Ulivi 1990). I have emphasized how the
discussion of pointwise constructions is motivated by Clavius’s pointwise
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construction of the quadratrix. I wish to remark here on another feature of the
Géométrie which joins it, and the analytic method in general, to two other
major works published in the fourth decade of the seventeenth century. I am
referring to Cavalieri’s Geometria, published in 1635, and to Guldin’s
Centrobaricae, the last book of which appeared in 1641. In a previous paper of
mine (Mancosu 1991) I have shown that both Cavalieri and Guldin aimed at a
development of geometry by means of direct proofs, and that they explicitly
avoided proofs by contradiction whenever possible. For Cavalieri direct
proofs were the welcome outcome of his use of indivisibles, and for Guldin an
ostensive development of geometrical theorems was based on his fundamental
theorem on centres of gravity (what we now call the theorem of Guldin and
Pappus). The emphasis on direct proofs was not just for purely mathematical
reasons, but was connected with, and ultimately relied on, more global
epistemological positions emerging from a Renaissance debate on the nature
of mathematical demonstrations which goes under the name of ‘Quaestio de
certitudine mathematicarum’ and which had important ramifications in the
seventeenth century. I shall summarize the main points of the debate, and then
proceed to show how deeply embedded is Descartes in these epistemological
developments.

Logicians, following Aristotle, had traditionally distinguished two types of
demonstration: demonstration of the ‘fact’ and of the ‘reasoned fact’. The two
types of demonstration were often identified with the resolutive and
compositive method of the mathematicians (i.e. analysis and synthesis). Of the
two types of proof, the latter was considered to be superior because proceeds
from causes to effects (a priori), whereas in the former one starts from the
effects to reach the causes (a posteriori).

The Quaestio de certitudine was centred on the issue of whether in
mathematics one could attain such causal demonstrations. Opinions differed,
but all (or almost all) the participants in the Quaestio agreed on singling out
proofs by contradiction as being non-causal, and thus inferior to causal (a
priori) proofs because that they do not explain their conclusions. My claim is
that Descartes is heavily influenced by these developments. Lachterman
(1989, pp. 158-9) has observed that Descartes reverses the traditional
distinction mentioned above which connects analytic proofs with a posteriori
proofs (from effects to causes) and synthetic proofs with a priori proofs (from
causes to effects). Descartes claims that analytic methods, by showing how a
result is obtained, also show why the result holds, and therefore analysis
deserves to be considered as the paradigmatic form of a priori proof.!®
Moreover, Descartes claims that the superiority of the analytic method comes
from the fact that the proofs obtained by applying it are causal, ostensive, and,
therefore, superior to proofs by contradiction. The most explicit statements by
Descartes in this connection are to be found in the letters exchanged between
Descartes and Mersenne on the subject of Fermat’s method of tangents.
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Descartes defended the superiority of his own method against the claims made
by Fermat (backed by Roberval) as to the superiority of Fermat’s method.
One of the arguments used by Descartes draws a sharp contrast between
proofs by contradiction and a priori proofs:

For, in the first place, his method is such that without intelligence and by chance, one
can easily fall upon the path that one has to follow in order to find it, which is nothing
else than a false position, based on the way of demonstrating which reduces to
absurdity, and which is the least esteemed and the least ingenious of all those of which
use is made in mathematics. By contrast, mine originates from a knowledge of the
nature of equations which, to my knowledge, has never been explained as thoroughly
as in the third book of my Geometry. So that it could not have been invented by a
person who ignored the depths of algebra. Moreover, my method follows the noblest
way of demonstrating that can exist, i.e. the one that is called a priori (AT, Vol. 1,
pp. 489-90)

And again, against Roberval (July 1638), on the issue of proofs by
contradiction:

... and I do not find anything reasonable in what he says, as when he claims the way of
concluding ad absurdum to be more subtle than the other. It is absurd and this way has
been used by Apollonius and Archimedes only when they could not find a better way.
(AT, Vol. 11, p. 274)

The appeal to a priori proofs against proofs by contradiction places
Descartes’s project for an ostensive development of mathematics in the same
category as those of Cavalieri and Guldin. Of course, the methods on which
Cavalieri, Descartes, and Guldin relied to carry through the project were quite
different. However, they agreed on the ‘metamathematical’ preference for
direct proofs over proofs by contradiction. Moreover, as the above quotations
and references show, their position is deeply embedded in the epistemological
issues which characterized the Renaissance and early seventeenth-century
debates on the nature of proofs.

6.3. DESCARTES’S GEOMETRIE: A
REVOLUTIONARY EVENT IN THE HISTORY OF
MATHEMATICS? PRE-KUHNIAN AND POST-
KUHNIAN DEBATES

6.3.1. Pre-Kuhnian debates

Although I am not aware of any use of the word ‘revolution’ in connection with
Descartes’s Géométrie in the seventeenth century, it might be worth remarking
that the use of the political metaphor of ‘revolt’ might have been used for the
first time in connection with mathematics in 1696 in the preface (written by
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Fontenelle, who was 'Hopital’s secretary) to the Analyse des infiniment petits
pour Tintelligence des lignes courbes by I'Hdpital:

Such was the state of Mathematics, and especially of Philosophy, until M. Descartes.
This great man, moved by his genius and by the superiority he felt inside, abandoned
the ancients to follow only this very reason that the ancients had followed. And this
happy boldness, which was treated as a revolt [qui fut traitée de révolte], gave us an

Of course, I'Hopital (or better, Fontenelle) does not say that Descartes
rebelled against the ancients, but this is of little interest. What is of interest is
the occurrence of the metaphor of ‘revolt’.

By the middle of the eighteenth century the political metaphor of revolution
became quite common for characterizing Descartes’s achievements in
mathematics. A few quotations from the eighteenth and nineteenth centuries
should suffice to convince the reader. In 1757 E. Montucla in his Histoire des
mathématiques wrote:

One could not give a better idea of what Descartes’s epoch in modern geometry has
been than comparing it to that of Plato in ancient geometry. The latter by inventing
Analysis gave a new face to this science. The former by the connection he established
between it and algebraic analysis, has also brought about in it a happy revolution
[heureuse révolution]. (Montucla 1957, p. 83; 1799-1802, Vol. 2, p. 112)

A widespread consensus about the revolutionary achievements of Descartes’s
Géométrie characterizes the historiography of mathematics in the nineteenth
century. For example, A. Comte in his Cours de philosophie positive (1835)
places Descartes at the origin of a general revolution in the mathematical
sciences:

It is indeed remarkable that men like Pascal payed so little attention to Descartes’s
fundamental conception without having any foreboding of the general revolution
[révolution général] that it was necessarily destined to bring about in the whole system
of mathematical science. This has happened because without the aid of transcendental
analysis this admirable method could not yet lead to essential results which could not
have been obtained as well by the geometric method of the ancients. (Comte 1830-42,
Vol. 1, Lect. VI, note, p. 176)

Thus in Comte’s opinion the Géométrie was ‘necessarily destined’ to bring
about a revolution in mathematics. (This raises a host of issues, to which I will
come back very soon.) Chasles, who once dubbed the Géométrie as proles sine
matre creata,”® emphasizes the novelty of Descartes’s achievements:

But the geometry of this illustrious innovator made, as in all other parts of
mathematics, a complete revolution [révolution compléte] in the theory of these [conic]
curves. (Chasles 1837, p. 91)

The above quotations comprise a representative sample of the eighteenth-
and nineteenth-century ‘consensus’ concerning Descartes’s revolutionary role
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in the history of mathematics. One should remark that the term ‘revolution’
refers, in the above quotations, to very different aspects of Descartes’s activity.
Indeed, Montucla puts emphasis on the unification of algebra and geometry,
whereas Chasles and Comte remark respectively on the break with the past
and on the revolutionary developments brought about by Descartes’s work.

This historiographical consensus was strongly challenged in our century by
the famous Cartesian scholar G. Milhaud in his book Descartes savant (1921),
which remains to this day one of the best sources for the study of Descartes’s
scientific activity. One of Milhaud’s main goals in this book was to show how
dependent was Descartes’s scientific activity on previous traditions, and
thereby to undermine the idea that Descartes’s work brings about a
‘revolutionary’ new start. The following passage taken from the conclusion of
his book is paradigmatic of Milhaud’s position:

When one reads Descartes and one follows in particular the development of his
scientific thought, one would say that his work comes out of his brain as wholly made,
that he owes nothing to the ancients or the moderns, and that he has accomplished an
unprecedented revolution in the human science. One could believe, at least at first
sight, that he has realized his programme by reconstructing on the ruins of all that had
already been done a completely new science which bears to the highest degree the mark
of his strong personality. In the first place this is what we would like to show in some
detail. Then, by bringing together this sort of spontaneous generation to the great
current that goes from the Greeks to Descartes we will notice how precisely on the
contrary it fits in and how little, deep down, Descartes is revolutionary despite all his
originality. (Milhaud 1921, p. 228)

Let me rehearse briefly Milhaud’s argument about Descartes’s mathematics.
Claims on behalf of Descartes’s revolution rest mainly on the central idea of
analytic geometry. Milhaud’s first move is to question whether this claim can
be rightfully held:

Of this group of ideas, as well as of Descartes’s whole mathematical work, what
posterity has maintained as being above all his own creation is the very idea of analytic
geometry, through which he has renewed mathematics and determined all its
subsequent progress. However, although Cartesian analysis has indeed given
invaluable services, does not the word creation, which is too easily applied to it, call for
some reservations? (Milhaud 1921, p. 132)

Milhaud begins by describing the main results contained in Fermat’s work
Isagoge ad locos planos et solidos and remarks that the Cartesian represen-
tation of curves by equations is also in Fermat, and that Fermat arrived
independently (around the same time as did Descartes) to what we may
‘consider as the essence of Cartesian geometry’.?! Of course, simultaneous
discoveries are a common occurrence in the history of science. However, the
case of analytic geometry, unlike that of the calculus, is remarkable for the
complete absence of a priority debate:
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Neither Descartes, nor Fermat, nor Roberval, nor Mersenne, nor Pascal, nor any one
of those who would have had as a matter of course a judgement to express remarks by a
single word the important fact that Descartes’s analytic geometry was already clearly
defined in its principles and its applications in some writings of Fermat which predate
the Geometry. (Milhaud 1921, p. 139)

The solution to this puzzle rests, for Milhaud, on the fact that Descartes’s and
Fermat’s work were simply the natural continuation and development of the
method of geometrical loci of the Greeks so that it never crossed the minds of
the seventeenth-century mathematicians that there might be a priority issue.
Thus any talk of revolution in connection with Descartes’s analytic geometry
is illusory:

The Revolution that Comte and the XIXth century historians have seen in Descartes’s
analytic geometry conceals therefore an illusion. It is neither a question of revolution
nor a question of a creation which radically transformed mathematics and renewed
science. It is only a matter of normal development, after a return to the Greeks, of the
main ideas of their analysis. (Milhaud 1921, p. 141)

Milhaud reached the same conclusions about the algebraic work contained in
book I1I of the Géométrie.

I have quoted at length from Milhaud’s book because mention of his work is
conspicuously absent from contemporary debates on revolutions. Although
Milthaud was aiming at Comte, his arguments seem to be more successful
against Montucla and Chasles. Indeed, Comte could hold that Descartes’s
work is in direct line of succession from that of the Greeks, and that it was
‘necessarily destined’ to bring about a ‘general revolution’.

Y. Belavalin his Leibniz critique de Descartes (1960) argued, against Comte,
that this second assertion cannot be maintained:

It is to transform the fact into a right. In fact, the results of the Cartesian method, once
expressed in the language of the infinitesimal calculus prepare, and seem to prepare
necessarily, the results of the Leibnizian method (or the Newtonian one) . . . Let’s go
back from the fact to the right, that is to the spirit of the Cartesian method: this spirit
opposes that of the Leibnizian method and is far from being ‘necessarily’ destined to
produce it. And how does it oppose it? By the refusal, which makes Descartes an
ancient, to introduce the consideration of the infinite in mathematics. (Belaval 1960,
pp. 300-1)

I think that Belaval’s point is well taken. As I have emphasized in the section
on finitism, Descartes rejects infinitary mathematics in his geometry. We
should also remember that the strongest opposition to the infinitesimal
calculus came indeed from Cartesian mathematicians.?? The calculus was
generated by the convergence of different strands of thought, analytical
geometry and infinitesimalist traditions, and took off only through the radical
subversion of the ‘epistemological signature’ of the Géométrie.
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6.3.2. Post-Kuhnian debates

Of the several post-Kuhnian contributions to the issue of Descartes and
revolutions in mathematics, I shall discuss here in detail only the claim on
behalf of Descartes’s revolutionary achievements put forward by Cohen
(1985). In particular, I shall not consider the more general problem of whether
the shift from ancient modes of geometrical reasoning to more algebraic ones
constituted a revolution (Mahoney 1980; Hawkins, quoted in Cohen 1985,
pp. 505-7; or the thesis recently defended by Lachterman 1989) that the
passage from ancient to modern mathematics is marked by a strong
epistemological discontinuity having to do with the different roles of
construction in the two periods.

There have also been post-Kuhnian claims aimed at demonstrating the non-
revolutionary nature of Descartes’s achievements. Usually, as in Boyer (1968),
they are simply modified versions of Milhaud’s argument for the continuity
between Greek mathematics and seventeenth-century mathematics:

The philosophy and science of Descartes were almost revolutionary in their break with
the past; his mathematics, by contrast, was linked with earlier traditions. To some
extent this may have resulted from the commonly accepted humanistic heritage—a
belief that there had been a Golden Age in the past, a ‘reign of Saturn’, the great ideas of
which remained to be rediscovered. Probably in large measure it was the natural result
of the fact that the growth of mathematics is more cumulatively progressive than is the
development of other branches of learning. Mathematics grows by accretions, with
very little need to slough off irrelevancies, whereas science grows largely through
substitutions when better replacements are found. It should come as no surprise,
therefore, to see that Descartes’s chief contribution to mathematics, the foundation of
analytic geometry, was motivated by an attempt to return to the past. (Boyer 1968,
p. 369)

Against this position Hawkins has claimed that a revolution takes place in
mathematics when ‘the methods of solving mathematical problems are
radically changed on a large scale’. Cohen summarized Hawkins’ position
thus:

In this sense, a revolution occurred in mathematics in the seventeenth century—the
principal figures in this revolution were Frangois Viéte, René Descartes, Pierre de
Fermat, Isaac Newton, and G. W. Leibniz. Of course, as Hawkins points out, their
collective endeavor ‘did not involve a “rejection” of ancient mathematics in the sense
that, for example, Euclid’s Elements were declared “false”’. But their work ‘did involve
a rejection of the methods by which the ancients solved problems’ and introduced ‘new
methods’, which were devised on the basis ‘of the premise that mathematical problems
should be reduced to the symbolic form of “equations” and the equations used to effect
the resolution’ . . . For Hawkins, the ‘central figure in initiating this revolution was
René Descartes’. (Cohen 1985, pp. 505-6)

As can be gathered from the above quotations, post-Kuhnian discussions as to
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the nature of Descartes’s achievements differ from the pre-Kuhnian ones in
that they depend on more global discussions about whether revolutions take
place in mathematics (and more generally in science) and, if so, which sense.
One of the scholars who has thought more about these issues is Cohen. In his
Revolution in science he makes a definite claim on behalf of Descartes’s
revolutionary role. In order to understand the exact nature of Cohen’s
argument, it is essential to summarize the strategy of his work. Cohen does not
give a definition of revolution in science (or mathematics), but suggests four
interesting criteria for deciding whether or not a revolution has occurred:

(1) the testimony of contemporary witnesses (including scientists’ assessment
of their own work),

(2) the critical examination of the documentary history of the subject in which
the revolution is said to have occurred;

(3) the judgement of competent historians, notably historians of science and
historians of philosophy;

(4) the general opinion of working scientists today.

Although I have some reservations about the value of test (4), I find the other
three tests very sound.

Cohen has no doubt that there has been a ‘Cartesian revolution’ in
mathematics. In order to assess Cohen’s application of the four tests to
Descartes’s Géométrie, I shall quote from his work. The first test is dealt with in
the following passage:

Descartes claimed to have revolutionized all science and mathematics and even the
methodological or philosophical underpinnings of science. His claim is of course not a
sufficient ground for believing in a Cartesian revolution, but it is buttressed by the
judgments of many seventeenth-century writers. Joseph Glanvill, for example, in his
comparison of ancient and modern learning, not only expressed his appreciation of
Descartes’s formidable achievements in mathematics and in physical sciences, but
printed Descartes’s name in a very large bold-faced type that bespoke his greatness.
(Cohen 1985, p. 157)

Let us now consider the second test:

Many accounts of Descartes’s work in mathematics limit his contributions to
coordinate geometry and the solution of ‘geometric’ problems by means of algebra. But
perhaps his major innovation was not on any such simple level of technique but rather
in his mode of thinking in general analytic terms . . . For instance, squaring a quantity
traditionally meant erecting a square with a side equal to or represented by that
quantity: the ‘square’ would be the area. Similarly for cubing. But once index notation
(x?2 for xx or x-quadratum; x 3 for xxx or x-cubus) was introduced—and Descartes was
the pioneer in this new mode of representing powers—then the breakthrough was
Descartes’s conception of such powers or exponents as abstract entities. This enabled

-mathematicians to write x", where n could have values other than 2 or 3, and in fact
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could even have fractional values. Descartes’s freeing of algebra from geometric
constraints constituted a revolutionizing transformation of mathematics and produced
the ‘general algebra’ that made possible the claim (in 1628) of having achieved ‘all that
was humanly possible’ in geometry and arithmetic. Newton’s earliest ideas concerning
the calculus were formed during a close study of the mathematical writings of Descartes
and of certain commentators on Descartes’s Geometry . . . The revolutionary quality of
Descartes’s mathematics is seen not only by comparing mathematics before and after
Descartes, but by noting that seventeenth-century mathematics (and that of the
succeeding centuries) bears firmly the Cartesian imprint. Hence Cartesian mathematics
passes the historical tests for a revolution (Cohen 1985, pp. 156-7)

And the third test:

Additionally, historians and philosophers have declared for a revolution associated
with Descartes ever since the middle of the eighteenth century, when it became
common usage to apply the concept of revolution to the development of science. This is
the third test. Cartesian science also passes the fourth and final test, the opinion of
active scientists. (Cohen 1985, p. 158)

I do not dispute the historical evidence mentioned by Cohen in support of his
claim. However, I think that the four tests proposed by Cohen do not allow us
to give a clear-cut answer to the problem of whether Descartes made a
revolution. My strategy will be simply to remark that for each one of the tests
we have strong non-revolutionary evidence.

Consider the first test. First of all, it is essential to remark that Descartes
himself seems to have been quite ambiguous about his position vis @ vis the
ancients and his contemporaries. At times he emphasized the novelty of what
he had achieved. However, at other times he implied that there was no loss of
continuity with previous mathematics, as in the following letter to Mersenne
(31 March 1638) where, about his solution to Pappus’s problem, he remarks:

However, this does not make it [ the solution] at all different from those of the ancients,
except for the fact that in this way I can often fit in one line that of which they filled
several pages. (AT, Vol. II, p. 83)

The Géométrie is not an easy book to read. Few of Descartes’s contemporaries
were able to completely master it. However, none of the mathematicians who
could have given a sound opinion of it (Fermat, Roberval, Pascal, Wallis,
Barrow, and so on) speak of Descartes as the mathematician who had
revolutionized geometry. For example, Barrow mentions the analytic method
of Viéte and Descartes only as one of the many novel things in seventeenth-
century mathematics, but significantly he praises most of all Cavalieri’s
method of indivisibles as ‘the most fruitful mother of new inventions in
geometry’. Well known also is Leibniz’s negative opinion of Descartes’s
achievements;

Those who are well versed in Analysis and Geometry know that Descartes has found
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nothing of consequence in Algebra, the speciosa itself being the work of Viéte; the
solution of cubic and quartic equations being the work of Scipio Ferro and Louis of
Ferrara; the genesis of equations through a multiplicity of equations set equal to zero
being the work of Harriot the Englishman; and the method of tangents, or of maxima
and minima, being the work of M. Fermat. So all is left for him is to have applied the
equations to the lines of geometry of higher degree which Viéte, biased by the ancients
which did not consider them geometrical, had neglected. (Quoted in Brunschvicg 1912,
p. 114)

In short, contemporary mathematicians do not seem to give the praise that a
revolutionary work would deserve. Thus Cohen’s first test does not give a clear
indication of the revolutionary nature of Descartes’s work. Of course, we have
already seen the explanation given by Comte for why there was no
appreciation of the potential of Descartes’s achievements before the calculus
came into the picture. However, we have seen that Milhaud and Belaval
argued, convincingly in'my opinion, that this line of argument is untenable.

Let us look at the second test. Although it is certainly true that the
techniques of the Géométrie were mastered by a large group of first-rate
mathematicians in the seventeenth century, among whom were Newton
(Galuzzi 1990), Leibniz (Belaval 1960), and the Bernoullis (Roero 1990), this
holds as well for the indivisibilist and the infinitesimalist techniques. And I feel
that in arguing in this way we end up with too many revolutions. We should
not forget, as I have already remarked, that the calculus could take off only by
subverting some of the critical tenets of Cartesian geometry. Moreover, it is
not at all clear how much the spread of the analytical techniques is due also to
Viéte and Fermat. There are very few works on the spread of Descartes’s
Géométrie, the most notable exceptions being Costabel (1988, 1990) and Pepe
(1982, 1988, 1990). Pepe, in particular reached the conclusion that the spread
of analytic geometry in Italy in the seventeenth century was due more to the
works of Fermat than to Descartes’s works:

Analytic geometry in the seventeenth century is not only in Descartes: in particular,
one must note that in Italy in this period the spread of Fermat’s writings was easier than
the spread of the Géométrie. (Pepe 1982, p. 282)

It would be interesting to have more work done in this area. As for Cohen’s
claim that Descartes freed algebra from geometric constraints, we have seen
that the issue of the relationship between algebra and geometry in the
Géométrie is one of the main interpretative issues surrounding the work.
Moreover, it is misleading to describe Descartes’s algebra of segments in such
a way, since the new interpretation of the arithmetical (or algebraic)
operations is no less geometrical than the previous one: it simply bypasses the
issue of dimensionality. This was certainly a great move, but by itself it can
hardly support the claim on behalf of Descartes’s revolution. Even on
metamathematical issues we have seen how dependent is Descartes on the
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ancients. His plan for classifying problems according to complexity is a
refinement, a brilliant one, of the ancient classification by Pappus. Moreover,
his rejection of mechanical curves and of ‘infinitary mathematics’ in his
Géométrie is more in line with ancient mathematics than with the modern
mathematics based on the analysis of the infinite.

Finally, concerning the third and fourth tests, I have shown that the claims
on behalf of a Cartesian revolution have been vigorously challenged by claims
to the contrary, by Milhaud, Belaval, Boyer, and all those who deny that
revolutions take place in mathematics.

Thus I conclude that Cohen’s tests do not provide us with an unequivocal
answer to the problem of the nature of Descartes’ achievements.

Although I have tried to strike a sceptical note on the claim that Descartes’s
Géométrie is a revolutionary event in the history of mathematics, I do not
intend to play down the importance of the achievements it represents, or its
role in shaping the algebraic techniques which were so masterfully exploited
by the developers of the calculus. My aim has been simply to give a sense to the
reader of how fraught with difficulties is the question of the revolutionary role
of Descartes’s geometry.

NOTES

[

. Quotations from the Géométrie are from the Smith and Latham edition (Descartes
1952). T use the following abbreviations: (SL 54) indicates Descartes (1952, p. 54),
and (AT 30) stands for the Adam and Tannery edition, Descartes (1897-1910,
p- 30). I have sometimes modified Smith and Latham’s translation; all other
translations are mine. There are several introductions to the Géométrie: see, for
example, besides the texts in history of mathematics mentioned in the biblio-
graphy, Bos (1981), Giusti (1987), Grosholz (1991), Itard (1956), Lachterman
(1989), Milhaud (1921), Scott (1952), and Vuillemin (1960).

2 On the relationship between Viéte and Descartes, see, for example, Giusti (1987)

and Tamborini (1987).

3. The problem can be stated in an inessential variant by introducing a factor of

proportionality:

CB-CF=4-CD-CH.

In the solution I assume that the lines are positioned exactly as shown in Fig. 6.3,
so as to avoid needless complicatons with signs.

4. Pappussays: ‘If there be more than six lines, it is no longer permissible to say “if the
ratio be given between some figure contained by four of them to some figure
contained by the remainder”, since no figure can be contained in more than three
dimensions. It is true that some recent writers have agreed among themselves to
use such expressions, but they have no clear meaning when they multiply the
rectangle contained by these straight lines with the square on that or the rectangle
contained by those’ (Thomas 1957, pp. 601-3).
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5. The descriptions of these curves are easily found in any good history of

mathematics: see for example Boyer (1968), Kline (1972), and, especially, Heath
(1921). The reader should keep in mind that the spiral and the quadratrix are
transcendental curves, whereas the conchoid and the cissoid are algebraic curves.
See also Lebesgue (1950).

. ‘With this Sporus is rightly displeased for these reasons. The very thing for which

the construction is thought to serve is actually assumed in the hypothesis. For how
is it possible, with two points starting from B, to make one of them move along a
straight line to A and the other along a circumference to D in an equal time, unless
you first know the ratio of the straight line AB to the circumference BED? In fact
this ratio must also be that of the speeds of motion. For, if you employ speeds not
definitely adjusted (to this ratio), how can you make the motions end at the same
moment, unless this should sometime happen by pure chance? Is not the thing thus
shown to be absurd?

‘Again, the extremity of the curve which they employ for squaring the circle, I
mean the point in which the curve cuts the straight line AD, is not found at all. For
if, in the figure, the straight lines CB, BA are made to end their motion together,
they will then coincide with AD itself and will not cut one another any more. In fact
they cease to intersect before they coincide with AD, and yet it was the intersection
of these lines which was supposed to give the extremity of the curve, where it met
the straight line AD. Unless indeed anyone should assert that the curve is
conceived to be produced further, in the same way as we suppose straight lines to
be produced, as far as AD. But this does not follow from the assumptions made; the
point G can only be found by first assuming (as known) the ratio of the
circumference to the straight line’ (Heath 1921, Vol. I, pp. 229-30).

. This seems to be the rationale for Pappus’s construction of the quadratrix by

means of the spiral and the cylindrical helix. Molland (1976, p. 27) says, ‘It seems
clear that Pappus regarded the spiral and the cylindrical helix as having a firmer
claim to the status of being geometrical than the quadratrix, which could however
receive authentication by being derived from them. The constructions used in the
derivation must also have been regarded as having a fairly geometrical status.
However, these derivations are not pointwise constructions, and the spiral and the
cylindrical helix are, from Descartes’s point of view, as problematic as the
quadratrix. See Pappus (1933, Book IV) and Molland (1976, p.27) for a
description of Pappus’s constructions.

. This appendix is also reproduced with some variants in the Geometria practica,

Book VII, pp. 189-94. The appendix is not in the first edition of the work (Clavius
1574), which is why I cite the third edition (Clavius 1591, p.. 349-59). In the third
edition the first two diagrams are mislabelled, but Fig. 6.6 here is a correctly
labelled version.

. And again, after having described the standard construction of the quadratrix by

two independent motions: ‘Sed quia duo isti motus uniformes, quorum unus per
circumferentiam DB, sit, & alter per lineas rectas DA, CB, effici non possunt, nisi
proportio habeatur circularis lineae ad rectam, merito a Pappo descriptio haec
reprehenditur: quippe cum ignota adhuc sit ea proportio, & quae per hanc lineam
investiganda proponatur. Quare nos Geometrice eandem lineam Quadratricem
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