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and specified at due length at the end of Section 2.2.2 in terms of the
disciplinary matrix and its elements.

A group of ‘laws’ may be treated in connection with Crowe’s own main
example, the history of vector analysis. ‘New mathematical concepts
frequently come forth . . . against the efforts of the mathematicians who create
them’ (‘Law’ 1). This formulation might be elegant, but it is misleading. Take
Hamilton’s invention of quaternions. Hamilton certainly did not struggle
against quaternions, and quaternions did not come forth by themselves.
Hamilton’s work was guided by the exemplar of complex numbers, and one of
the elements of the disciplinary matrix of his time was that multiplication was a
commutative operation. Only after a long period of strenuous work did
Hamilton abandon commutativity and find quaternions (Crowe 1967a). The
problem Hamilton attacked was normal mathematics (Crowe 1967a, p. 12),
but it could not be solved in a normal way; it grew into an anomaly. For a man
like Hamilton who stubbornly stuck to the problem for many years, it is highly
probable that in course of time he would try lines of thought that deviated
more and more from the usual ways. Thus to find a solution like quaternions
presupposes much time and effort, necessary for removing the restrictions
imposed by accepted beliefs and concepts. This, I think, is what Crowe calls
the struggle against new concepts.

‘Many new mathematical concepts . . . meet forceful resistance after their
appearance and achieve acceptance only after an extended period of time’
(‘Law’ 2). The mathematical community, like the creator of a new concept,
only reluctantly abandons some of its accepted beliefs and concepts. This
could be seen functionally. A light-handed use of new concepts that break with
many implicit restrictions and beliefs would endanger the very basis of the
communication of the community. Furthermore, most mathematicians are
concerned solely with normal mathematics and take no pains to understand
and appreciate new and peculiar.concepts and theories. Thus it takes a long
time for an unusual concept like that of quaternions to be accepted, and
sometimes inventions are overlooked completely.

‘The fame of the creator of a new mathematical concept has a powerful . . .
role in the acceptance of that . . . concept, at least if the new concept breaks
with traditions’ (‘Law’ 6). Reputation has been considered as functional in
many ways by sociologists of science. The main point is that reputation
ensures the disciplinary competence of a member of the mathematical
community. As to the cited ‘law’, this plainly means that for simple reasons of
economy the members of the mathematical community are more willing to
spend time on the non-normal work of a famous mathematician than on that
of an outsider. This is even more so when, as in the case of Hamilton and
Grassman, the work of the outsider even looks strange and outsiderish.

‘New mathematical creations frequently arise within . . . contexts far larger
than the preserved contents of these creations . . .” (‘Law’ 7). A new concept or
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theory as it is worked out by an outsider or a mathematician who has over the
course of a long period of work drifted away from the normal paths and has
connected different ideas in unusual ways will very probably be framed in a
peculiar, personal way. Furthermore, mathematicians who break with
tradition and violate accepted belief tend to put something else in its place.
They will either interpret their creations in a way to make them as compatible
as possible with the contemporary disciplinary matrix, or they will draw up—
as justification—a philosophy of their own, which helps them to keep their
professional identity, and which will be closely connected with the new
concept or theory. The same process will—in other forms—take place
collectively in the process of acceptance by the mathematical community.
Many of the peculiarities will be done away with, but some piece of what is not
the ‘content’ (again, what is it?) may become a common possession.

‘Multiple independent discoveries of mathematical concepts are the rule,
not the exception’ (‘Law’ 8). Crowe points to his ‘Laws’ 2 and 7 for a partial
explanation. I can understand this only in the sense that the extended period of
acceptance of new concepts gives room for independent discoveries, but this is
a minor point as to the explanation of multiples. I do not pretend to be able to
come forth with a general explanation for multiples in the history of
mathematics; each one is different and each is multifactored. But the fact that
multiple discoveries are frequent is a strong point in arguing that the
interaction of the mathematicians in their community is the vital basis of the
development of mathematics. The fact that discoveries are ‘in the air’ can only
be rationally explained by the contemporary disciplinary matrix, the
combination of certain elements of which, like exemplars, concepts, problems,
and values, plus the existence of anomalies and, maybe, extra-mathematical
influences, make possible the rise of certain new concepts. Again, the history of
vector analysis is an example. Crowe (19674, pp. 48, 248) speaks of a ‘trend’ or
a ‘movement’ which evolved from different traditions. A comparative study
considering the relation of each attempt to the contemporary background
ought to throw more light on the causes of this ‘trend’. To end this discussion
of the ‘laws’ connected with the history of vector analysis, I should like to add
that Crowe’s book is—in the light of the viewpoints put forward in this
chapter—an excellent piece of history of mathematics.

‘Although the demands of logic, consistency, and rigour have at times urged
the rejection of some concepts now accepted, the usefulness of these concepts
has repeatedly forced mathematicians to accept and to tolerate them ...’
(‘Law’ 3). This regularity in the history of mathematics should be explained in
terms of the basic beliefs and values of the mathematical community. [ have
argued above that fruitfulness is a value of higher priority than rigour.
Furthermore, there is the generally implicit belief that mathematics is
concerned with the solution of problems. Even if at times it might seem that the
mathematical community, or part of it, is aiming at the construction of nice
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theories, in the case of Crowe’s example, the imaginary numbers, mathematics
was aimed at problem-solutions and those impossible numbers were an
important solution. Questions of foundations and of ontology are left to the
philosophers or to philosophically minded mathematicians, who are tolerated
because they are willing to confront uncomfortable questions that do not
concern the true mathematics. What the true mathematics is varies through
history, and can be seen only as a consensus of the mathematical community
that cannot be sharply delimited.

I have in Section 2.3 given an interpretative idea about the emergence of
rigour, to which Crowe’s ‘Law’ 4 alludes. Crowe states that the rigour of
textbook presentation is frequently a late acquisition, rather forced upon than
sought by the pioneers in the field. It may be added in explanation that before
the textbook presentation of a subject there is frequently a period of normal
mathematics in the field. In this period attention is given to the details and
especially to those points which do not accord with the standards of the
mathematical community, and thus rigour is forced upon the presentation of
the subject.

NOTES

1. Foundation crises have been treated by J. Thiel (1972). He starts with a basically
social definition of ‘crisis’, seems to forget about it, and ends up in a systematic,
philosophical discussion. The book is historically unsatisfying. S. Bochner (1963), in
a paper on Kuhn’s book, even holds the mathematical foundation crises to be
revolutions, without giving much evidence to the point. The considerable main
point of his paper is the role of the mathematical paradigm in physics.

2. J. Hoppner and myself, in a course on the foundation crises of mathematics given in
Hamburg in 1973, have tried to apply the concepts of Kuhn and Thiel. The
discussion showed both to be inadequate as generalization of the historical facts and
as a guideline for historical inquiry.

3. In an exploratory study of the social features of mathematical problem-solving,
C. S. Fisher (1972-3) has given an interesting description of the contemporary
mathematical community which he describes as quite diffuse.

4. Possible doubts as to the correctness of this story in the case of Kummer do not

weaken the argument (Edwards 1975).

. This example comes from my research on the prehistory of lattice theory.

6. H. J. M. Bos remarked on this statement that it shows the intrinsic difference
between science and mathematics: science uses symbolic generalizations of
something; mathematics studies symbolic generalizations themselves—they are the
concepts.

w
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Appendix (1992): revolutions
reconsidered

HERBERT MEHRTENS

Thomas Kuhn’s terms ‘paradigm’ and ‘scientific community’” have made their
way into the standard vocabulary of science. ‘Revolutions’ appear to be
somewhat outmoded, and the ‘disciplinary matrix’ with its elements is no
longer called by this name, but is nevertheless commonly in use in analyses of
the sciences and their history. The debate on the relative importance of
‘internal’ and ‘external’ factors in the development of science has faded away,
and various forms of constructivism and contextualism now dominate
advanced historical and theoretical work.

The history of mathematics, however, appears to be somewhat behind the
trends. And although there is a substantial body of literature on the social
history of mathematics, no integrative history of mathematical knowledge and
mathematical practices inside or outside academia has been achieved. The
complaint I hear once in a while from historians of mathematics, that their
field is too isolated from and too little recognized by colleagues in the history
of natural sciences, marks a problem, not of the inaccessibility of mathematics,
but rather of the inability of its historians to relate to issues of interest in
general history of science. This, to me, is one of the reasons for reconsidering
revolutions in mathematics.

Re-reading my paper of 1976, I am quite in agreement with my younger self,
although in the meantime I have read and learnt, changed terminology and
aspects. The ‘community’, for example, is a friendly term for a phenomenon
which needs a more sober and realistic consideration. Pierre Bourdieu (1975)
preferred the term ‘scientific field” in his analysis of the symbolic capitalism of
science. And sociological systems theory has provided tools for analysis which
do not presuppose belief in the values scientists advertise. These ‘communities’
are social systems structured (not only) functionally and by internal and
external power relations. With such an approach, the analysis of, for instance,
mathematics in Nazi Germany can escape the perils of legitimatory
constructions (Mehrtens 1987, 1988, 1990b; Maass 1988).

‘Revolution’, with its strong political meaning, is a metaphor when applied
to science. As such it may be used in historical writing on mathematics.
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Whether the use is adequate or not is a matter of style and of conceptual and
historical precision. ‘Revolution’ means the overthrow of a dominating and
pervasive power-structure, and is usually used in a positive sense by the
protagonists of the event or their heirs. Used as a metaphor in the history of
mathematics, this may apply to dominating traditions, as in the example of
Cambridge I gave in the 1976 paper. [ would see no problems with the word as
long as it is carefully used as a metaphor, that is, in a predominantly stylistical
sense. It should be observed, however, that political terms change their
meaning and their fields of associations. Revolutions are no longer what they
once were; they are not so easily combined with the adjectives ‘glorious’ or
‘great’ any more. Maybe this is the main reason why the term appears to be
outmoded for the sciences.

Such changing interconnections of meaning lead me to the question of why
we should revisit the question of ‘revolutionary’ developments in mathema-
tics. If there are turns in its history that are construed as so fundamental that
they might be called ‘revolutionary’, these are certainly not just ‘in’
mathematics. They show mathematics in context and connect it with society,
culture, economy, the natural sciences, technology, and so on.

The positive sound of ‘revolution’ indicates that the term is a value-laden
construct. Political revolutions in their construction are connected with dates,
governments, and leaders. Scientific revolutions can be constructed in a
similar way, marked by names like Galileo, Newton, and Einstein, and by the
dates of publications. But this is mainly hero-worship, a somewhat mythical,
retrospective construction marking the foundation of a new and better era in
science. In such constructions the cultural and political context is usually
blanked out or taken in a very specific way as a value-adding mark. If there is
to be a serious analytic use of the metaphor, then it should aim at the
structures of power and legitimacy before and after the event. In mathematics
and the sciences one has to press the metaphor hard to make it work in this
sense.

Gaston Bachelard (1938) and Michel Foucault (1969) have used the term
‘epistemological rupture’ for such fundamental changes. Such a rupture need
not be dated—it may be of wide diachronical and synchronical extension.
Non-Euclidean geometry, to take the standard example of a ‘revolution’ in
mathematics, was constructed in the 1830s, acknowledged in the 1860s, but
questioned until far into the twentieth century. And it was not alone: the rise of
symbolic or modern algebra is a parallel development, part of the same
rupture in the consciousness of mathematics.! Individually and collectively,
mathematicians were working to overcome the obstacle implied in Euclidean
geometry, the rejection and maybe even fear of a possible multiplicity of
geometrical worlds. The obstacle exists as long as geometry is taken to be not a
construction but a representation of something, and as such ‘true’. Thus there
is no definite ‘end’ to the rupture, although one might interpret the dominance
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of the ‘paradigm’ of mulitiple geometrical constructions of immanent truth as
the end of the rupture. In this case one should be aware that the self-
understanding of the discipline with this paradigm relates itself to the obstacle
it has overcome, and it constructs the ‘revolution’ as part of its historical
identity.

As to the context of this rupture, is the fact that the artistic modernism of the
latter part of the nineteenth century related to non-Euclidean geometry and to
the ‘fourth dimension’ in its way towards abstraction (Henderson 1983) a
parallel development, an effect of the developments in mathematics, or part of
a fundamental cultural change? This, I am afraid, is a question that must be
rejected, like that of whether Euclidean geometry or non-Euclidean geometry
is true. There are obvious historical interconnections between geometry and
algebra, mathematics and art, but there is no single definite answer to that
question. The interpretation is not in history but in the historian, dependent
on the historian’s decisions on what to write about, for whom, and with which
messages. There may be a good history of the ‘revolution in geometry’
ignoring algebra, art, and philosophy, given, however, that the author is aware
of his decision for ignorance and is able to decide methodically which
interpretations and explanations hold water within the limits he is setting. A
similar argument would hold for a book with, say, the title The cultural rupture
of the nineteenth century: Truth and representation in the arts, the sciences, and
philosophy. Its author would have to omit the finer structures of the change in
geometrical work, and should be aware of this in adopting a methodology.

History is a constructive art and science. We construct the revolutions and
ruptures, trying to be scientific by a methodology tying the construction to the
remnants of the past and renouncing the conscious production of historical
fiction. In the eighteenth century fiction was still possible in historiography,
for example, in writing fictitious speeches for historical actors. This change in
historiography is, by the way, another candidate for rupture analysis
connectible to mathematics as one of the ways of linguistic construction of
objectivity. In the history of science, and especially of mathematics, we also
have to be aware that we are constructing and writing from the present state of
the science. We are well beyond the rupture that established non-Euclidean
geometries as a legitimate and important piece of mathematics. We cannot
return to a mental state of innocence. We have to be aware of this
phenomenon, the histoire recurrente, to be able to avoid the implicit teleology
and the presentism of traditional history of science (Fichant and Pécheux
1969; Mehrtens 1990b, Section 6.3.3.).

All this admitted, let us return to the ‘revolutionary’ ruptures. We are
looking for epistemological shifts; that is, we consider fundamental restructur-
ings of scientific ways of knowing. To be able to mark the obvious difference
between mathematics and other fields of knowledge and knowledge
production, we need some conception of the specificities of mathematical

Revolutions in Mathematics, edited by D.A. Gillies, Oxford University Press, 1995. ProQuest Ebook Central,

http://ebookcentral.proquest.com/lib/ethz/detail.action?doclD=4962924.

Created from ethz on 2018-09-14 04:02:04.



Copyright © 1995. Oxford University Press. All rights reserved.

Appendix (1992): revolutions reconsidered 45

knowledge. Before we can even start with the ‘revolutions’, we arrive at the
infamous question, ‘What is in mathematics?’ It is exactly this question I posed
in 1976 about the little word ‘in’ Michael Crowe used. An answer is only
possible if we are aware that it is historical and not universal. The question
‘Whatis . . . asked about a field of knowledge and knowledge production can
be answered only by the self-understanding of the field or by its (possibly
deviating) interpretation.

If we talk in chemistry about phlogiston and oxygen and in physics about
classical and relativistic mechanics, we might use the term ‘revolution” and
think of it as the overthrow of beliefs in fundamental truths about the physical
world. The ‘about’ poses the problem if we come to mathematics. Brian
Rotman, in his semiotical analysis (1988, p. 34), writes that mathematics ‘is
“about”—in so far as this locution makes sense—itself. The entire discourse
refers to, is “true” about, nothing other than its own signs.” And Davis and
Hersh (1981, p. 406) write about ‘true facts about imaginary objects’. To be
brief and apodictic, mathematics is the construction of sign-systems of a
specific kind. These systems work with sign—token combinations signifying the
rules for their own use. The rules are of a (grammatically) imperative
character. Loosely speaking, mathematical sign combinations encapsulate
orders about the use of the very signs that represent these orders (Mehrtens
1990b, Chap. 6.3). This semiotic approach is the best I know, because it starts
from the simple observation of what mathematicians do and what they have
left on paper as results of their work. Clearly, there are hosts of thorny
questions to be answered about the epistemology and the practices of
mathematics from a semiological point of view.> Much needs to be done in this
respect. But with this approach we can do away with the unnecessary
questions of the ‘in’ and the ‘about’. And we can take the ‘truth’ and ‘meaning’
of the mathematical sign-systems historically as the (self-)interpretation of
mathematical practices and knowledge. Although historically very useful, this
is a modern construction not adequate for the self-understanding of, say,
seventeenth-century mathematics. We cannot escape this dilemma, but the
struggle between historical adequacy and a presentist historical perspective is
not a vicious circle but a productive, epistemic one.

Epistemological ruptures in mathematics relate to the question of what it is
that we know (and how we know it) when we know mathematics. Thus they
are in the self-understanding of mathematics, not ‘in’ the sign-systems, but
definitely ‘in” mathematics understood as a practice of knowledge production
and management. Taurinus, in his struggle with the alternative geometry,
wrote: ‘If the third system (i.e. hyperbolic geometry) were the true one, there
would be absolutely no Euclidean geometry.”> And Gottlob Frege wrote:
Nobody can serve two masters. One cannot serve truth and untruth at the same time. If
Euclidean geometry is true, then Non-Euclidean geometry is false, and if Non-
Euclidean geometry is true, then Euclidean geometry is false. (Frege 1969, p. 183)
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Both authors presuppose what has been the dominating understanding of
geometry up to the nineteenth century, its unicity: one world, one geometry,
one truth. The modern position in the self-understanding of mathematics is
Hilbert’s: truth and existence in mathematics are equivalent to consistency.
Mathematics can construct multiple symbolic universes with multiple
immanent truths.

This is not a ‘discovery’ about mathematics and truth, but rather a new
construction of something called ‘truth’ within mathematics which has
nothing to do any more with truth in any sense relating to representation and
objectivity. Mathematical theories are constructions of signs and rules, that
indeed present ‘true’ facts about imaginary objects signified by signs on paper
or on blackboards.

The spectacular controversies in the latter half of the nineteenth century and
in the first half of the twentieth revolve about this problem of the self-
understanding of mathematics, of how we know and what we know in
mathematics. This is indeed an epistemological rupture. The change is located
in the relation of the producers of knowledge to their product. What does my
product, my mathematical theory or theorem, mean, and what is my meaning
as the possessor or producer of this knowledge? Is it a gift from the gods, a sign
of the real order of the cosmos? Is it a tool of universal reason shared with the
divine intellect? Is it our free creation? Is it a perfect imaginary universe or is it
an imperfect tool resting on arbitrary assumptions? These are questions
connected with the self-construction of mathematics which is also always the
self-construction of the value and meaning of the mathematician. I have
written elsewhere at length on these aspects of the rise of mathematical
modernism and the controversies accompanying it (Mehrtens 19905).

In the first step of mathematics into its status as a science in ancient Greece
we may locate the first rupture, when mathematical truth was constituted as
something that could be established as such. Earlier mathematics just worked
when used, and that was it. Now it could be shown in itself to be working, and
that was called truth. We may locate a further rupture in the Renaissance,
when autonomous reason was established. And maybe, since G6del and the
introduction of the computer we are now working on a new problem, involved
in a new rupture that might lead away from the imaginary unity of
mathematics. Hilbert’s quest for the universal establishment of mathematical
truths in a metamathematics failed. But mathematics still works as it did
before the Greeks, and the paradigm of the absolute proof. Today we find that,
in electronic computation, very large numbers and possible errors in the
recognition of signs play their role, posing new problems that do not look like
mathematical problems but might turn out to be problems fundamental to the
self-understanding of, say, ‘post-modern’ mathematics (Davis 1985; Knuth
1976). Since the very concept of ‘proof’ comes into question, one might even
speculate about the end of Euclidean mathematics and the return to a
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manifold system of mathematical practices, whose ‘truths’ depend on the sign
systems working as they are supposed to work. Some such practices might
retain the habit of ‘rigorous’ proofs, but they would no longer dominate the
self-understanding of mathematical knowledge-production and knowledge-
handling. The ‘post-modern’ proof and truth would be that with a more-or-
less well-determined factor of probability (Specker 1988).

The epistemological self-construction of mathematics is a historical
phenomenon. It is a prime factor in the production of new knowledge, as the
history of the rupture in geometry shows. It is also a prime factor in the
historical understanding of mathematics; we historians should know this, and
risk speculations like that on post-modernism once in a while to question our
self-understanding and to train our constructive minds for historiographical
work. Further, and I return to the point of departure, the self-construction of
mathematics and of the mathematician belong to the general social
constructions of meaning and order in cultural practices.

Again, the rupture in geometry shows the point. Foucault (1966, Chap. 8)
locates the beginning of literature in the modern sense of the term at the
opening of the nineteenth century. At this time the understanding and
handling of language diverged into formalization on the one hand and
interpretation on the other. Gauss, who decidedly spanned the divide between
the old order and the new in geometry, turned interpretation into a tool within
mathematics. Give the ‘impossible numbers’ a mathematical interpretation,
and they have their mathematical legitimacy. They become ‘natural’, however,
only to the mathematician; the decisive connection is not with some kind of
imagery but with a well-established mathematical field of objects. Similarly,
Lobachevsky (1898, p. 24) stated that the new geometry, even if it is not
realized in nature, can be realized in our imagination and opens manifold
possibilities of applying geometry in analysis and vice versa. The British
debate on symbolic algebra centred around the use of uninterpreted signs. In
the outcome, in algebra and in geometry, there was nothing left to be
interpreted about the meaning of signs and theories in images or terms taken
from outside mathematics. Mathematicians turned formalization with their
artificial sign-language into the centre of their productive work; their internal
‘interpretations’ became mathematical models or simply new theories,
themselves part of formalization. Interpretation became a matter for other
cultural fields like literature and history. With this divergence, the question of
truth, meaning, and representation in general came to be posed in a new way.
It was treated by Cézanne and Picasso, by Mach and Einstein, by Baudelaire
and Nietzsche. In many cases one can point to concrete historical interactions.
The cultural uses of the new geometries give ample illustrations of the
interrelations of these shifts in the general construction of meaning and order.
Mathematics is always part of the social system of cultural production of signs
and meanings. Its epistemological ruptures may well be analysed by
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concentrating on the work of mathematicians, but they also show us more
clearly that mathematics is an integral part of intellectual history. Its isolation
and that of its historians is a part of their self-construction and self-
understanding. It can be otherwise and, if so, certainly fruitful for a meaningful
historiography that is not only presentistic and antiquarian but also futuristic.

NOTES

1. ‘It is remarkable too that at the very period in history when significant steps where
taken to release geometry from its Euclidean shackles, a similar movement was
taking place, quite independently, to rescue algebra from arithmetic’ (Dubbey 1977,
p. 302; see also Novy 1973, Chap. 6).

2. ‘Semiology’ is a term coined by Saussure (1916) for the study of signs in their social
use and meaning (see also Kristeva 1977).

3. My translation, cited according to Imre Toth, who gives the most convincing
interpretation of the rise of non-Euclidean geometry {Toth 1980).
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Conceptual revolutions and the history
of mathematics: two studies in the
growth of knowledge (1984)*

JOSEPH DAUBEN

In most sciences one generation tears down what another has built, and what
one has established another undoes. In mathematics alone each generation
builds a new storey to the old structure.

Hermann Hankel
Je le vois, mais je ne le crois pas.

Georg Cantor

Transformation, by presenting each anterior concept, theory, law, or
principle as the occasion of an innovation, focuses attention on the cause, the
possible reason why only one of the many scientists to whom the scientific
idea was known produced the transformation in question.

I. Bernard Cohen

It has often been argued that revolutions do not occur in the history of
mathematics and that, unlike the other sciences, mathematics accumulates
positive knowledge without revolutionizing or rejecting its past.! But there are
certain critical moments, even in mathematics, that suggest that revolutions
do occur—that new orders are brought about and eventually serve to supplant
an older mathematics. Although there are many important examples of such
innovation in the history of mathematics, two are particularly instructive: the
discovery by the ancient Greeks of incommensurable magnitudes, and the
creation of transfinite set theory by Georg Cantor in the nineteenth century.
Both examples are as different in character as they are separated in time, and
yet each provides a clear instance of a major transformation in mathematical
thought. The Greeks’ discovery of incommensurable magnitudes brought
about changes that were no less significant than the revolutionary transforma-
tion mathematics experienced in the twentieth century as a result of Georg

* This chapter originally appeared in Transformation and tradition in the sciences, Essays in
honor of I. Bernard Cohen, (1984), (ed. E. Mendelsohn), Cambridge University Press, p. 81-103.
Copyright © Cambridge University Press 1984. It is reprinted with the permission of Cambridge

University Press. An early version of this paper was read at the New York Academy of Sciences on
27 September 1978.
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Cantor’s set theory. Taking each of these as marking important transitional
periods in mathematics, this essay is an attempt to investigate the character of
such transformations.

Recently there has been considerable interest in the growth of mathematics, the
nature of that growth, and itsrelation to the development of knowledge generally.
In autumn 1974, at the fiftieth anniversary meeting of the History of Science
Society, an entire session was devoted to the historiography of mathematics and
to the relationship between the growth of mathematical knowledge and the
patterns described in Thomas S. Kuhn’s book The structure of scientific
revolutions (1962, second edition; enlarged, 1970a). Naturally, the question of
revolutions arose, and with it the problem of whether revolutions occur at all in
the history of mathematics. When invited to consider the example of Cantorian
set theory, I took the opportunity to suggest that revolutions did indeed occur in
mathematics, although the example of transfinite set theory seemed to imply that
Cantor’srevolutionary work did not fit the framework of Professor Kuhn’s model
of anomaly—crisis-revolution.? Nor is there, perhaps, any reason to expect that a
purely logicodeductive discipline like mathematics should undergo the same sort
of transformations, or revolutions, as the natural sciences.

Similar interest in the nature of mathematical knowledge and its growth was
evidenced at the Workshop on the Evolution of Modern Mathematics held at
the American Academy of Arts and Sciences in Boston, 7-9 August 1974. Of
all the participants at the workshop, no one questioned the phenomenon of
revolutions in mathematics so directly as did Professor Michael Crowe of the
University of Notre Dame. In a short paper prepared for the workshop and
subsequently published in Historia Mathematica, he concluded emphatically
with his tenth ‘law’ that ‘revolutions never occur in mathematics’.®> My
intention here, however, is to argue that revolutions can and do occur in the
history of mathematics, and that the Greeks’ discovery of incommensurable
magnitudes and Georg Cantor’s creation of transfinite set theory are
especially appropriate examples of such revolutionary transformations.

4.1. REVOLUTIONS AND THE HISTORY OF
MATHEMATICS

Whether one can discern revolutions in any discipline depends upon what one
means by the term ‘revolution’. In insisting that revolutions never occur in
mathematics, Professor Crowe explains that his reason for asserting this ‘law’
depends on his own definition of revolutions. As he puts it, ‘My denial of their
existence is based on a somewhat restricted definition of “revolution” which in
my view entails the specification that a previously accepted entity within
mathematics proper be rejected” (Crowe 1975, p. 470). Having said this,
however, he is willing to admit that non-Euclidean geometry, for example, ‘did
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lead to a revolutionary change in views as to the nature of mathematics, but
not within mathematics itself’ (Crowe 1975, p. 470).

Certainly one can question the definition Professor Crowe adopts for
‘revolution’. It is unnecessarily restrictive, and in the case of mathematics it
defines revolutions in such a way that they are inherently impossible within his
conceptual framework. Nevertheless, revolutionary moments have been
identified, not only by historians but by mathematicians as well. Rather than
dictate the meaning of revolution, there is no reason not to allow its use in
legitimately describing certain penetrating changes in the evolution of
mathematics. However, before challenging further the assertion that revolu-
tions never occur in the history of mathematics, it will be helpful to consider
briefly the meaning of revolution as a historical concept. Here we are fortunate
in having a recent study by Professor Cohen to guide us. In fact, what follows
is a very brief résumé of results owing largely to Professor Cohen’s research on
the subject of revolutions.*

The concept of revolution first made its appearance with reference to
scientific and political events in the eighteenth century, although with
considerable confusion and ambiguity as to the meaning of the term in such
contexts. In general, the word was regarded in the eighteenth century as
indicating a breach of continuity, a change of great magnitude, even though
the old astronomical sense of revolution as a cyclical phenomenon persisted as
well. But, following the French Revolution, the new meaning gained currency,
and thereafter revolution commonly came to imply a radical change or
departure from traditional or acceptable modes of thought. Revolutions, then,
may be visualized as a series of discontinuities of such magnitude as to
constitute definite breaks with the past. After such episodes, one might say that
there is no returning to an older order.

Bernard de Fontenelle may well have been the first author to apply the word
‘revolution’ to the history of mathematics, specifically to its evolution in the
seventeenth century. In his Eléments de la géométrie de linfini (1727), he was
thinking of the infinitesimal calculus of Newton and Leibniz.® What
Fontenelle perceived was a change of so great an order as to have altered
completely the state of mathematics. In fact, Fontenelle went so far as to
pinpoint the date at which this revolution had gathered such force that its
effect was unmistakable. In his eulogy of the mathematician Rolle, published
in the Histoire de I' Académie Royale des Sciences of 1719, Fontenelle referred
to the work of the Marquis de 'Hopital, his Analyse des infiniment petits (first
published in 1696, with later editions in 1715, 1720, and 1768), as foliows:

In those days the book of the Marquis de 'Hopital had appeared, and almost all the
mathematicians began to turn to the side of the new geometry of the infinite, until then
hardly known at all. The surpassing universality of its methods, the elegant brevity of
its demonstrations, the finesse and directness of the most difficult solutions, its singular

Revolutions in Mathematics, edited by D.A. Gillies, Oxford University Press, 1995. ProQuest Ebook Central,

http://ebookcentral.proquest.com/lib/ethz/detail.action?doclD=4962924.

Created from ethz on 2018-09-14 04:02:04.



Copyright © 1995. Oxford University Press. All rights reserved.

52 Joseph Dauben

and unprecedented novelty, it all embellishes the spirit and has created, in the world of
geometry, an unmistakable revolution.®

Clearly this revolution was qualitative, as all revolutions must be. It was a
revolution that Fontenelle perceived in terms of character and magnitude,
without invoking any displacement principle—any rejection of earlier
mathematics—before the revolutionary nature of the new geometry of the
infinite could be proclaimed. For Fontenelle, Euclid’s geometry had been
surpassed in a radical way by the new geometry in the form of the calculus, and
this was undeniably revolutionary.

Traditionally, then, revolutions have been those episodes of history in
which the authority of an older, accepted system has been undermined and a
new, better authority appears in its stead. Such revolutions represent breaches
in continuity, and are of such degree, as Fontenelle says, that they are
unmistakable even to the casual observer. Fontenelle has aided us, in fact, by
emphasizing the discovery of the calculus as one such event—and he even
takes the work of 'Hépital as the identifying marker, much as Newton’s
Principia of 1687 marked the scientific revolution in physics or the Glorious
Revolution of the following year marked England’s political revolution from
the Stuart monarchy. The monarchy, we know, persisted, but under very
different terms.

In much the same sense, revolutions have occurred in mathematics.
However, because of the special nature of mathematics, it is not always the
case that an older order is refuted or turned out. Although it may persist, the
old order nevertheless does so under different terms, in radically altered or
expanded contexts. Moreover, it is often clear that the new ideas would never
have been permitted within a strictly construed interpretation of the old
mathematics, even if the new mathematics finds it possible to accommodate
the old discoveries in a compatible or consistent fashion. Often, many of the
theorems and discoveries of the older mathematics are relegated to a
significantly lesser position as a result of a conceptual revolution that brings
an entirely new theory or mathematical discipline to the fore. This was
certainly how Fontenelle regarded the calculus. Similarly, it is also possible to
interpret the discovery of incommensurable magnitudes in Antiquity as the
occasion for the first great transformation in mathematics, namely, its
transformation from a mathematics of discrete numbers and their ratios to a
new theory of proportions as presented in Book V of Euclid’s Elements.

4.2. THE PYTHAGOREAN DISCOVERY OF
INCOMMENSURABLE MAGNITUDES

Aristotle reports the Pythagorean doctrine that all things were numbers, and
surmises that this view doubtless originated in several sorts of empirical
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observation.” For example, in terms of Pythagorean music theory the study of
harmony had revealed the striking mathematical constancies of proportion-
ality. When the ratios of string lengths or flute columns were compared, the
harmonics produced by other, but proportionally similar lengths, were the
same. The Pythagoreans also knew that any triangle with sides of length 3, 4,
5, whatever unit might be taken, was a right triangle. This too supported their
belief that ratios of whole numbers reflected certain invariant and universal
properties. In addition, Pythagorean astronomy linked such terrestrial
harmonies with the motions of the planets, where the numerical harmony, or
cyclic regularity of the daily, monthly, or yearly revolutions, was as striking as
the musical harmonies the planets were believed to create as they moved in
their eternal cycles. All these invariants gave substance to the Pythagorean
doctrine that numbers—the whole numbers—and their ratios were respon-
sible for the hidden structure of all nature. As Aristotle comments:

The so-called Pythagoreans, having begun to do mathematical research and having
made great progress in it, were led by these studies to assume that the principles used in
mathematics apply to all existing things . . . they were more than ever disposed to say
that the elements of all existing things are found in numbers.?

But what were these numbers? For the early Pythagoreans, Aristotle indicates
that they were apparently something like physical ‘monads’. In the
Metaphysics, for example, one passage offers the following elaboration: ‘[ The
Pythagoreans] compose all heaven of numbers (¢ d18udv), not of numbers
in the purely arithmetical sense, though, but assuming that monads have
size.®

Thus the Pythagoreans apparrently came to regard the numbers themselves
as providing the structure and form of the material universe, their ratios
determining the shapes and harmonies of all symmetrical things. The
Pythagoreans gave the word Loyot to the groups of numbers determining the
character of a given object, and later the meaning of this word was extended, as
we shall see, from that of ‘word’ to ‘ratio’.*?

This sort of arithmology found its realization in the Pythagoreans’ quest to
associate numbers with all things, and to determine the internal properties,
ratios, and relations between numbers themselves. Thus the number of stones
needed to outline the figure of a man or a horse was taken by the Pythagorean
Eurytus as the ‘number’ for man or horse.!! The essence of such things was
expressed by a particular number. Moreover, some Pythagoreans sought to
establish the number for justice, or for marriage. Others distinguished
numbers that were perfect (the tetractys, for example, 1+2+3+4=10),
amicable, or friendly. Figurate numbers, including pentagonal and solid
numbers, were also subjects of great interest.*2 It is against this background of
Pythagorean numerology, in which the Adyog of all things was thought to be
an invariant principle of the universe, expressible in terms of whole numbers
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and their ratios, that the discovery of incommensurable magnitudes must be
viewed. The Pythagoreans’ arithmology would doubtless have provided
sufficient incentive for their search for the hidden numbers, the prevailing
logos governing the most important objects of their mysticism, for example the
pentagon or the golden section. It is also possible that the discovery was made
in less rarefied contexts, through study of the simplest of right triangles, the
isosceles right triangle.

Exactly when incommensurable magnitudes were first discovered is not
particularly relevant for the argument here.! Similarly, the details of the
initial discovery are also of secondary importance, and we can dispense with
the dilemma of whether the discovery was first made in the context that
Aristotle reports it, by studying the ratio of the length of a square’s edge with
its diagonal, or whether, as has been argued by K. von Fritz (1945) and by S.
Heller (1958), that Hippasus found incommensurability in considering the
construction of the regular pentagon.** What concerns us is the discovery and
its subsequent effect. Philosophically, it would certainly have represented a
crisis for the Pythagoreans.!® Having been tempted by the seductive harmony
of generalization, some Pythagoreans had carried too far their universal
principle that all things were numbers. The complete generalization was
inadmissible, and this realization was a major blow to Pythagorean thought, if
not to Greek mathematics. In fact, a scholium to Book X of Euclid’s Elements
reflects the gravity of the discovery of incommensurable magnitudes in the
well-known fable of the shipwreck and the drowning of Hippasus:

It is well known that the man who first made public the theory of irrationals perished
in a shipwreck in order that the inexpressible and unimaginable [Kai
&royov Kai aveideov] should ever remain veiled . .. and so the guilty man, who
fortuitously touched on and revealed this aspect of living things, was taken to the place
where he began and there is forever beaten by the waves.'¢

What deserves attention here are the words ‘inexpressible’ and ‘unimagin-
able’. It is difficult, if not impossible, for us to appreciate how hard it must have
been to conceive of something one could not determine or name—the
inconceivable—and this was exactly the name given to the diagonal: &loyov.
This reflects the double meaning of the word logos as word, as the ‘utterable’ or
‘nameable’, and now the irrational, the alogon, as the ‘unspeakable’, the
‘unnameable’. In this context, it is easy to understand the commentary: ‘Such
fear had these men of the theory of irrationals, for it was literally the discovery
of the “unthinkable”.’!”

Ultimately, however, the Greeks regarded the discovery not as a crisis but as
a great advance. Whether or not discovery of incommensurable magnitudes
precipitated a crisis in Greek mathematics, and, if so, whether it affected only
the foundations of mathematics rather than the mathematics itself, the
significant issue concerns the response mathematicians were forced to make
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once the existence of incommensurable magnitudes had been divulged and
was a matter of general knowledge.'®

What ultimate effect did this discovery have on the content and nature of
Greek mathematics? Above all, the theories of proportion advanced by
Theaetetus and Eudoxus in the early fourth century BC (390-350 BC) served to
reverse the emphasis of earlier mathematics. Consider, for example, the
statement of Archytas (an early Pythagorean and teacher of Eudoxus), who
was emphatic that arithmetic was superior to geometry for supplying
satisfactory proofs.!® After the discovery of incommensurable magnitudes,
such a statement would be virtually impossible to justify. In fact, the opposite
was closer to the truth, as the subsequent development of Greek geometric
algebra demonstrates.

Basically, the transformation from a simple theory of commensurabie
proportions (where geometry and arithmetic might be regarded as coexten-
sive) to a new theory embracing incommensurable magnitudes (for which
arithmetic was inadequate) centres on the contributions of Theaetetus and
Eudoxus. However, we know from Plato’s Theaetetus that a major step
toward the better understanding of the irrational was taken by Theaetetus’s
teacher, Theodorus, who established the incommensurability of certain
magnitudes up to (but not including) \/1‘7 by means of geometric
constructions. Although Theodorus’s achievements were limited owing to his
lack of a sufficiently developed arithmetic theory, some historians have argued
that he began to develop a metric geometry capable of handling arithmetic
properties in much the form of propositions in Book II of Euclid’s Elements.2°

Following his teacher Theodorus, Theactetus became interested in the
general properties of incommensurables and produced the classification that
so impressed Socrates in Plato’s dialogue (Theaetetus, 147C-148B). Also,
Theaetetus realized that, to treat incommensurables successfully, geometry
had to embody more of the results of arithmetic theory, and so he sought to
translate necessary algebraic results into geometric terms. Here he focused on
the arithmetic properties of relative primes, using the process of determining
greatest common factors by means of successive subtraction, or
anthyphairesis.?* This enabled Theaetetus to reformulate the theory of
proportion to include certain incommensurable magnitudes that he classified
as the medial, binomial, and apotome, and these were enough for the results in
which he was interested. But Theaetetus apparently was not inspired to study
the new theory of proportion itself—something his premature death certainly
precluded.

Eudoxus, however, realized that the methods Theaetetus had brought to
geometry from arithmetic for the purpose of studying incommensurables
could actually provide the basis for an even more comprehensive theory of
proportion. In studying the construction of the regular pentagon, dodeca-
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hedron, and icosahedron, Eudoxus seems to have realized that these, like
segments divided into mean and extreme ratio, involved incommensurable
magnitudes that were not included in the three classes treated by Theaetetus
(Knorr 1975, pp.286-8). Because of his interest in a formal, more
comprehensive theory of proportions, he transformed Theaetetus’s methods
involving anthyphairesis by focusing on the theory of proportion itself and
producing in large measure the theorems elaborated in Book V of Euclid’s
Elements, where the concept of equal multiples made it possible to develop a
theory of proportion that was generally applicable to incommensurables. The
advantages of the new Eudoxan theory were considerable, and comparison
with Theaetetus’s anthyphairetic approach made clear the differences.
Aristotle, in fact, contrasted the two on several occasions, and noted the
superiority of Eudoxus’s formulation explicitly.??

Having produced a comprehensive theory of proportion, however,
Eudoxus and his followers, perhaps chief among them Hermotimus of
Colophon, were also interested in providing a systematic development of the
new theory that eventually provided the basic framework for Euclid’s Book V
of the Elements, a book a scholiast tentatively attributes to Eudoxus.?® In
dealing with incommensurable magnitudes, ‘unfamiliar and troublesome’
concepts as Morris Kline (1972, p. 50) has described them, the need to
formulate axioms and to deduce consequences one by one so that no mistakes
might be made was of special importance. This emphasis, in fact, reflects
Plato’s interest in the dialectic certainty of mathematics and was epitomized in
the great Euclidean synthesis, which sought to bring the full rigour of
axiomatic argumentation to geometry. It was in this spirit that Eudoxus
undertook to provide the precise logical basis for the incommensurable ratios,
and in so doing, gave great momentum to the logical, axiomatic, a priori
‘revolution’ identified by Kant (1781-7) as the great transformation wrought
upon mathematics by the Greeks (see aso Cohen 1976, pp. 283-4).

In concluding this brief summary of Greek mathematics and the
transformation caused by the discovery of incommensurable magnitudes,
several aspects of that transformation deserve particular emphasis. Primarily,
two things were unacceptable after the discovery of incommensurables: (1) the
Pythagorean interpretation of ratio, and (2) the coming into play of proofs
they had given concerning commensurable magnitudes. A new theory was
needed to accommodate irrational magnitudes—and this was provided by
Theaetetus and Eudoxus. The less dramatic transformation of the definition of
the number concept was a lengthier process, but over the course of centuries it
eventually led to admission of irrational numbers as being as acceptable
ontologically as natural numbers or fractions.?*

Wholly apart from the slower, more subtle transformation of the number
concept, however, was the dramatic, much quicker transformation of the
character of Greek mathematics itself. Because Pythagorean arithmetic could
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not accommodate irrational magnitudes, geometric algebra (cumbersome
though it was) developed in its stead. In the process, Greek mathematics was
directly transformed into something more powerful, more general, more
complete. Central to this transformation were auxiliary elements that reflected
the transformation under way. A new interpretation of mathematics must have
discarded as untenable the older Pythagorean doctrine that all things were
number—there were now clearly things that did not have numbers in the
Pythagorean sense of the word—and consequently their view of number was
correspondingly inadequate. The older concept of number was severely limited,
and in the realization of this inadequacy and the creation of a remedy to solve it
came the revolution. New proofs replaced old ones.?> Soon a new theory of
proportion emerged, and as a result, after Eudoxus, no one could look at
mathematics and think that it was the same as it had been for the Pythagoreans.
Nor was it possible to assert that Eudoxus had merely added something to a
theory that previously was perfectly all right. The lesson of the irrational was
that everything was not all right. As a result of the new theory of proportion, the
methods and content of Greek mathematics were vastly different, and
comparison of Book V of Euclid with the Pythagorean books VII-IX (perhaps
reflecting directly earlier arithmetics from the previous century) reveals the deep
transformation that Eudoxus and his theory of proportion brought to Greek
mathematics.% The old methods were supplanted, and eventually, although the
same words, ‘number’ or ‘proportion’, might continue in use, their meaning,
scope, and content would not be the same.

In fact, the transformation in conceptualization from irrational magnitudes
to irrational numbers represented a revolution of its own in the number
concept, although this was not a transformation accomplished by the Greeks.
Nor was it an upheaval of a few years, as are most political revolutions, but a
basic, fundamental change. Even if the evolution was relatively slow, this does
not alter the ultimate effect of the transformation. The old concept of number,
although the word was retained, was gone, and in its place, numbers included
irrationals as well.

This transformation of the concept of number, however, entailed more than
just extending the old concept of number by adding on the irrationals—the
entire concept of number was inherently changed, transmuted as it were, from
a world-view in which integers alone were numbers, to a view of number that
was eventually related to the completeness of the entire system of real
numbers.

In much the same way, Georg Cantor’s creation of transfinite numbers in
the nineteenth century transformed mathematics by enlarging its domain from
finite to infinite numbers. Above all, the conceptual step from transfinite sets
to transfinite numbers represents a shift that was in many ways the same as the
shift from irrational magnitudes to irrational numbers. From the concrete to
the abstract, the transformation in both cases revolutionized mathematics.
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4.3. GEORG CANTOR’S DEVELOPMENT OF
TRANSFINITE SET THEORY

Born in St Petersburg (Leningrad) in 1845, Georg Cantor left Russia for
Germany with his parents in 1856.27 Following study at the Gymnasium in
Wiesbaden, private schools in Frankfurt-am-Main and the Realschule in
Darmstadt, he entered a Hohere Gewerbeschule (Trade School), also in
Darmstadt, from which he graduated in 1862 with the endorsement that he was
a ‘very gifted and highly industrious pupil’ (Fraenkel 1930, p. 192). But his
interests in mathematics prompted him to go on to university, and with his
parents’ blessing he began his advanced studies in the autumn of that same year
at the Polytechnicum in Zirich. Unfortunately, his first year there was
interrupted early in 1863 by the sudden death of his father, although within the
year he resumed his studies, at the university in Berlin. There he studied
mathematics, physics, and philosophy, and was greatly influenced by three of
the greatest mathematicians of the day: Kummer, Weierstrass, and Kronecker.

After the summer term of 1886, which he spent in Gottingen, Cantor
returned to the University of Berlin from which he graduated in December
with the distinction ‘Magna cum laude’ (Fraenkel 1930, p. 194). Following
three years of local teaching and study as a member of the prestigious
Schellbach seminar for teachers, Cantor left Berlin for Halle in 1869 to accept
an appointment as a Privatdozent in the Department of Mathematics. There
he came under the influence of one of his senior colleagues, Eduard Heine, who
was just completing a study of trigonometric series. Heine urged Cantor to
turn his talents to a particularly interesting but extremely difficult problem:
that of establishing the uniqueness of the representations of arbitrary
functions by means of trigonometric series.”® Within the next three years
Cantor published five papers on the subject. The most important of these was
the last, published in 1872, in which he presented a remarkably general and
innovative solution to the representation problem.

With impressive skill Cantor was able to show that any function represented
by a trigonometric series was not only uniquely represented, but that in the
interval of representation an infinite number of points could be excepted
provided only that the set of exceptional points be distributed in a specific
way.2® The condition was limited to sets Cantor described as point sets of the
first species (Dauben 1979, pp. 41-2). Given a set P, the collection of all limit
points p in P defined its first derived set, P’. Similarly, P” represented the
second derived set of P, and contained all limit points of P’. Proceeding
analogously, for any set P Cantor was able to generate an entire sequence of
derived sets P’, P, . ... P wasdescribed as a point set of the first species if, for
some index n, P"= (7.

As outlined in the paper of 1872, Cantor’s elementery set-theoretic concepts
could not break away into a new autonomy of their own. Though he
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had the basic idea of the transfinite numbers in the sequence of derived sets P’,
P’ ...,P®,P=*1 | thebasisfor any articulate conceptual differentiation
between P" and P was lacking. As yet, Cantor had no precise basis for
defining the first transfinite number oo following all finite natural numbers n.3°
A general framework within which to establish the meaning and utility of the
transfinite numbers was lacking. The only guide Cantor could offer was the
vague condition that P"s£ (J for all n, which separated sets of the first species
from those of the second. Cantor could not begin to make meaningful progress
until he had realized that there were further distinctions yet to be made in
orders of magnitude between discrete and continuous sets. Until the close of
1873, Cantor did not even suspect the possibility of such differences.

In order to argue his uniqueness theorem of 1872, Cantor discovered that he
needed to present a careful analysis of limit points and the elementary
properties of derived sets, as well as a rigorous theory of irrational numbers.>!
It was the problem of carefully and precisely defining the irrational numbers
that forced Cantor to face the topological complexities of the real line and to
consider seriously the structure of derived sets of the first species.

After the success of his paper of 1872, it was a natural step to search for
properties that would distinguish the continuum of real numbers from other
infinite sets like the totality of rational or algebraic numbers. What Cantor
soon established was something most mathematicians had assumed, but
which no one had been able to formulate precisely: that there were more real
numbers than natural, rational, or algebraic numbers (Cantor 1874). Cantor’s
discovery that the real numbers were non-denumerable was not in itself
revolutionary, but it made possible the invention of new concepts and a
radically new theory of the infinite. When coupled with the idea of one-to-one
correspondences, it was possible to distinguish mathematically for the first
time between different magnitudes, or powers, of infinity. In 1874 he was only
able to identify denumerable and non-denumerable sets. But as his thinking
advanced, he was eventually able to detach his theory from the specific
examples of point sets, and in 1883 he was ready to publish his Grundlagen
einer allgemeinen Mannigfaltigkeitslehre, in which he presented a completely
general theory of transfinite numbers.*2 It was in the Grundlagen that Cantor
introduced the entire hierarchy of infinite number classes in terms of the order
types of well-ordered sets. More than twelve years later, in his last major
publication, the Beitrdge of 1895 and 1897, he formulated the most radical and
powerful of his new ideas, the entire succession of his transfinite cardinal
numbers:*?

N, Ny, ...

Cantor’s introduction of the actual infinite in the form of transfinite
numbers was a radical departure from traditional mathematical practice, even
dogma. This was especially true because mathematicians, philosophers, and
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theologians in general had repudiated the concept since the time of Aristotle.>*
Philosophers and mathematicians rejected completed infinities largely
because of their alleged logical inconsistency. Theologians represented
another tradition of opposition to the actual infinite, regarding it as a direct
challenge to the unique and absolute infinite nature of God. Mathematicians,
like philosophers, had been wary of the actual infinite because of the
difficultiecs and paradoxes it seemed inevitably to introduce into the
framework of mathematics. Gauss, in most authoritative terms expressed his
opposition to the use of such infinities in mathematics in a celebrated letter to
Heinrich Schumacher:

But concerning your proof, I protest above all against the use of an infinite quantity
[Grésse] as a completed one, which in mathematics is never allowed. The infinite is only
a fagon de parler, in which one properly speaks of limits.?*

Cantor believed, on the contrary, that on the basis of rigorous, mathe-
matical distinctions between the potential and the actual infinite, there was no
reason to hold the old objections and that it was possible to overcome the
objections of mathematicians like Gauss, philosophers like Aristotle, and
theologians like Thomas Aquinas, and to do so in terms even they would find
impossible to reject. In the process, Cantor was led to consider not only the
epistemological problems his new transfinite numbers raised, but to formulate
as well an accompanying metaphysics. In fact, he argued convincingly that the
idea of the actual infinite was implicitly part of any view of the potential infinite
and that the only reason mathematicians had avoided using the actual infinite
was because they were unable to see how the well-known paradoxes of the
infinite, celebrated from Zeno to Bolzano, could be understood and avoided.
He argued that once the self-consistency of his transfinite numbers was
recognized, they could not be refused a place alongside the other accepted but
once disputed members of the mathematical family, including irrational and
complex numbers (Cantor 1883, p. 182). In creating transfinite set theory,
Cantor was making a significant contribution to the constellation of
mathematical ideas.

Of central concern to Cantor’s entire defence of transfinite set theory was
the nature of mathematics and the question of what criteria determined the
acceptability of mathematical concepts and arguments. He reinforced his
support of transfinite set theory with a simple analysis of the familiar and
accepted positive integers. Insofar as they were regarded as well defined in the
mind, distinct and different from all other components of thought, they served
in a connectional or relational sense, he said, to modify the substance of
thought itself (Cantor 1883, p. 181). Cantor described this reality that the
whole numbers consequently assumed as their intrasubjective or immanent
reality. In contradistinction to the reality numbers could assume strictly in
terms of mind, however, was the reality they could assume in terms of body,
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manifest in objects of the physical world. Cantor explained further that this
second sort of reality arose from the use of numbers as expressions or images of
processes in the world of natural phenomena. This aspect of the integers, be
they finite or infinite, Cantor described as their transubjective or transient
reality.>®

Cantor specifically claimed the reality of both the physical and ideal aspects
of his approach to the number concept. The dual realities, in fact, were always
found in a joined sense, in so far as a concept possessing an immanent reality
always possessed a transient reality as well. Cantor believed that to determine
the connections between the two kinds of reality was one of the most difficult
problems of metaphysics.

In emphasizing the intrasubjective nature of mathematics, Cantor con-
cluded that it was possible to study only the immanent realities, without
having to confirm or conform to any subjective content. As noted earlier, this
set mathematics apart from all other sciences and gave it an independence
from the physical world that provided great freedom for mathematicians in the
creation of mathematical concepts. It was on these grounds that Cantor
offered his now-famous dictum that the essence of mathematics is its freedom.
As he put it in the Grundlagen (Cantor 1883, p. 182):

Because of this extraordinary position which distinguishes mathematics from all other
sciences, and which produces an explanation for the relatively free-and-easy way of
pursuing it, it especially deserves the name of free mathematics, a designation which 1, if
I had the choice, would prefer to the now customary ‘pure’ mathematics.

Cantor was asserting the freedom within mathematics to allow the creation
and application of new ideas on the basis of intellectual consistency alone.
Mathematics was therefore absolutely free in its development and bound only
to the requirement that its concepts permit no internal contradictions, but that
they follow in definite relation to previously given definitions, axioms, and
theorems. Mathematics, Cantor believed, was the one science that was
justified in releasing itself from any metaphysical fetters. Its freedom, insisted
Cantor, was its essence.

The detachment of mathematics from the constraints of an imposed structure
embedded in the natural world frees it from the metaphysical problems inherent
inany attempt to understand the ultimate status of the physical and life sciences.
Mathematicians do not face the preoccupation of scientists who must try to
make theory conform with some sort of given, external reality against which
those theories may be tested, articulated, improved, revised, or rejected.®”
Mathematicians, if they worry at all, need do so only in terms of the internal
consistency of their work. This effectively eliminates the possibility of later
discrepancies. Thus the grounds do not seem present within mathematics for
generating anomaly and crisis, or for displacing earlier theory with some
incompatible new theory.
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One important consequence, in fact, of the insistence on self-consistency
within mathematics is that its advance is necessarily cumulative. New theories
cannot displace the old, just as the calculus did not displace geometry. Though
revolutionary, the calculus was not an incompatible advance requiring
subsequent generations to reject Euclid; nor did Cantor’s transfinite
mathematics require displacement and rejection of previously established
work in analysis, or in any other part of mathematics.

Advances in mathematics, therefore, are generally compatible and consis-
tent with previously established theory; they do not confront and challenge the
correctness or validity of earlier achievements and theory, but augment,
articulate, and generalize what has been accepted before. Cantor’s work
managed to transform or to influence large parts of modern mathematics
without requiring the displacement or rejection of previous mathematics.

4.4. REVOLUTIONARY ADVANCE IN
MATHEMATICS

Does this mean, then, that mathematics, because it represents a form of
knowledge in which progress is genuinely cumulative, cannot experience
periods of legitimate revolution? Surely not. To say that mathematics grows
by the successive accumulation of knowledge, rather than by the displacement
of discredited past theory by new theory, is not the same as to deny
revolutionary advance. Cantor’s proof of the non-denumerability of the real
numbers, for example, led to the creation of the transfinite numbers. This was
conceptually impossible within the bounds of traditional mathematics, yet in
no way did it contradict or compromise finite mathematics. Cantor’s work did
not displace, but it did augment the capacity of previous theory in a way that
was revolutionary, that would otherwise have been impossible. It was
revolutionary in breaking the bonds and limitations of earlier analysis, just as
imaginary and complex numbers carried mathematics to new levels of
generality and made solutions possible that would otherwise have been
impossible to formulate. Moreover, the extensive revision due to transfinite set
theory of large parts of mathematics, involving the rewriting of textbooks and
precipitating debates over foundations, are all results of what Thomas Kuhn
has diagnosed as companions to revolutions.*® And all these are reflected in
the historical development of Cantorian set theory.

4.5. THE NATURE OF SCIENTIFIC RESOLUTION

I have deliberately juxtaposed the words ‘revolution’ and ‘resolution’ in order
to emphasize what I take to be the nature of scientific advance reflected in the
development of the history of mathematics—Dbe it the Greek discovery of
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incommensurables and the concomitant creation of a theory of proportion to
accommodate them, or Cantor’s profound discovery of the non-denumerab-
lity of the real numbers and his subsequent creation of transfinite numbers and
the development of a general, transfinite set theory. Because mathematics is
restricted only by the limits imposed by consistency, the inherent structure of
logic determines the structure of mathematical evolution. I have already
suggested the way in which that evolution is necessarily cumulative. As theory
develops, it provides more complete, more powerful, more comprehensive
problem-solutions, sometimes yielding entirely new and revolutionary
theories in the process. But the fundamental character of such advance is
embodied in the idea of resolution. Like the microscopist, moving from lower
to higher levels of resolution, successive generations of mathematicians can
claim to understand more, with a greater stockpile of results and increasingly
refined techniques at their disposal. As mathematics becomes increasingly
articulated, the process of resolution brings the areas of research and subjects
for problem-solving into greater focus, until solutions are obtained or new
approaches developed to extend the boundaries of mathematical knowledge.
Discoveries accumulate, and some inevitably lead to revolutionary new
theories uniting entire branches of study, producing new points of view,
sometimes wholly new disciplines that would have been impossible to produce
within the bounds of previous theory.

This is as true of the discovery of incommensurable magnitudes as it is of the
advent of irritational, imaginary, and transfinite numbers, of the invention of
the calculus, or the discovery of non-Euclidean geometries. None of these
involved crisis or the rejection of earlier mathematics, although each
represented a response to the failures and limitations of prevailing theory.
New discoveries, particularly those of revolutionary import like those
discussed here, provide new modes of thought within which more powerful
and general results are possible than ever before. As Hermann Hankel (1871,
p. 25) once wrote, ‘In mathematics alone each generation builds a new storey
to the old structure.” This is the most obvious sense in which I mean that the
nature of scientific advance can be understood directly, in terms of the logic of
argument and mathematics, as one of increasingly powerful resolution.

4.6. RESISTANCE TO CHANGE

One last feature of the evolution of mathematics may help to corroborate
further the fact that it does experience revolutionary transformations, for
resistance to new discoveries may be taken as a strong measure of their
revolutionary quality. One form of this resistance was reflected in the Greeks’
inability to conceive of anything as number except the integers—although
eventually this prejudice was overcome, just as Cantor eventually overcame
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