
Chapter 20

Suslin’s Problem

In this chapter we investigate Suslin’s Problem, which is the question whether every
linearly ordered set which is dense, unbounded, complete, and satisfies the countable
chain condition is also separable. First it will be shown that the answer to Suslin’s
Problem is “no” if and only if there exists a Suslin line, and then it will be proved
that the existence of a Suslin line is independent of ZFC.

A Topological Characterisation of the Real Line

Let (P,<) be a linearly ordered set, in particular, for any two distinct elements
a, b ∈ P we have either a < b or b < a. We say that

• P is dense if for all a, b ∈ P with a < b there is a c ∈ P such that a < c < b;

• P is unbounded if for all a ∈ P there are b0, b1 ∈ P such that b0 < a < b1;

• P is complete if every non-empty, bounded subset of P has a supremum and an
infimum;

• P is separable if there exists a countable set C ⊆ P such that for all a, b ∈ P
with a < b there is a c ∈ C such that a < c < b;

• P satisfies ccc if every family of pairwise disjoint, non-empty open intervals
(a, b) = {c ∈ P : a < c < b} is countable.

It is well-known that the real line R together with the natural ordering “<” is—up to
isomorphism—the unique linearly ordered set that is dense, unbounded, complete,
and separable. Now, Suslin’s Problem is the question whether separable can be
replaced with satisfying ccc, that is, whether every linearly ordered set which is
dense, unbounded, complete, and satisfies ccc is isomorphic to the real line.
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First we show “separable” implies “ccc”.

FACT 20.1. Every separable, linearly ordered set satisfies ccc.

Proof. Let (P,<) be a separable, linearly ordered set and let

I :=
{
(aξ, bξ) : ξ ∈ Λ

}

be a family of pairwise disjoint, non-empty open intervals. Since P is separable,
there exists a countable set C ⊆ P such that for all a, b ∈ P with a < b there is a
c ∈ C such that a < c < b. In particular, for each interval (aξ, bξ) ∈ I there is
a cξ ∈ C such that aξ < cξ < bξ. Since the intervals in I are pairwise disjoint,
for any distinct ξ, ξ′ ∈ Λ we get cξ 6= cξ′ . Now, since C is countable, also I is
countable, and since I was arbitrary, we get that P satisfies ccc. ⊣

With FACT 20.1, Suslin’s Problem is equivalent to the question whether “ccc” im-
plies “separable”, which leads to the following definition: A linearly ordered set
which is dense, unbounded, complete, and satisfies ccc, but which is not separable,
is called a Suslin line. So, Suslin’s Problem is equivalent to the question whether
there exists a Suslin line.

The following result shows that every dense, unbounded, linearly ordered set which
satisfies ccc can be completed.

LEMMA 20.2. Let (Q,<) be a dense, unbounded, linearly ordered set. Then there
is a complete, dense, unbounded, linearly ordered set (P,≺) and a set Q′ ⊆ P ,
such that:

• (Q′,≺) is isomorphic to (Q,<);

• Q′ is dense in P , i.e., if x, y ∈ P with x ≺ y, then there is a z ∈ Q′ such that
x ≺ z ≺ y.

Furthermore, if (Q,<) satisfies ccc but is not separable, then also (P,≺) satis-
fies ccc but is not separable.

Proof. A so-called Dedekind cut in Q is a pair (A,B) of disjoint, non-empty sub-
sets of Q such that :

• A ∪B = Q;

• for all a ∈ A and b ∈ B we have a < b;

• if the infimum of B exists (which is the same as the supremum of A), then it
belongs to B.
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Let P be the set of all Dedekind cuts in Q and let

(A1, B1) ≺ (A2, B2) ⇐⇒ A1  A2 .

Then, by the properties of Dedekind cuts, “≺” is a linear ordering on P , and more-
over, P is complete. To see that every non-empty bounded subset of P has a supre-
mum, let

{
(Aι, Bι) : ι ∈ Λ

}
be a non-empty bounded subset of P . Then the

Dedekind cut (⋃

ι∈Λ

Aι,
⋂

ι∈Λ

Bι

)

is its supremum. Similarly, every non-empty bounded subset of P has an infimum.
For each q ∈ Q let

Aq := {x ∈ Q : x < q} and Bq := {x ∈ Q : q ≤ x} .

Then, for Q′ :=
{
(Aq , Bq) : q ∈ Q

}
, (Q′,≺) is obviously isomorphic to (Q,<).

We leave it as an exercise to the reader to show that Q′ is dense in P , and that if Q
satisfies ccc but is not separable, then also P satisfies ccc but is not separable. ⊣

So, in order to construct a Suslin line, it is enough to construct a linearly ordered set
which is not separable, but which is dense, unbounded, and satisfies ccc.

Suslin Lines and Suslin Trees

In order to solve Suslin’s Problem we first state it in terms of trees. A tree is a
partially ordered set (T,<) with the property that for each x ∈ T , the set {y ∈
T : y < x} of all predecessors of x is well-ordered by “<”. For x ∈ T let o.t.(x)
be the order type of the well-ordered set {y ∈ T : y < x}. For α ∈ Ω, the
αth level of T , denoted T |α, consists of all x ∈ T such that o.t.(x) = α, i.e.,
T |α = {x ∈ T : o.t.(x) = α}. We require that T |0 contains a single element, called
the root of T . The height of T , denoted h(T ), is the least α such that T |α = ∅, or
in other words,

h(T ) :=
⋃

{o.t.(x) + 1 : x ∈ T } .

For x ∈ T let Tx := {y ∈ T : x < y} and

succT (x) :=
{
y ∈ Tx : ¬∃z ∈ T (x < z < y)

}
,

i.e., succT (x) is the set of immediate successors of x. A branch of T is a maximal
linearly ordered subset of T . Notice that if η ⊆ T is a branch of T and x ∈ η, then
{y ∈ T : y ≤ x} ⊆ η. The length of a branch is the order type of the branch, and a
branch is called countable if its order type is countable. An anti-chain in T is a set
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A ⊆ T such that any two distinct elements x, y ∈ A are incomparable, i.e., neither
x < y nor y < x.

Now, a tree (T,<) is called a Suslin tree if it has the following properties:

(a) The height of T is ω1.

(b) Every branch of T is countable.

(c) Every anti-chain in T is countable.

The goal is now to show that there exists a Suslin line if and only if there exists a
Suslin tree. The construction of a Suslin tree from a Suslin line will be straightfor-
ward, whereas the other construction will require some more work.

LEMMA 20.3. There exists a Suslin line if and only if there exists a Suslin tree.

Proof. (⇒) Let S be a Suslin line. The tree T we construct from S will consist of
non-degenerate closed intervals [a, b] ⊆ S, where a, b ∈ S, a < b, and [a, b] :=
{c ∈ S : a ≤ c ≤ b}. The partial ordering “<” of T is defined by stipulating

I < J ⇐⇒ J  I.

The construction of T is by induction on ω1. Let I0 := [a0, b0] be an arbitrary non-
degenerate closed interval (i.e., a0 < b0). Assume that for some α ∈ ω1, we have
already constructed non-degenerated closed intervals Iβ = [aβ , bβ] for all β ∈ α.
Then, since α is countable, the set C := {aβ : β ∈ α} ∪ {bβ : β ∈ α} is a
countable subset of S. Now, since S is a Suslin line, S is not separable, or in other
words, no countable subset of S is dense. In particular,C is not dense, and therefore,
there exists a non-degenerate interval Iα = [aα, bα] such that C ∩ Iα = ∅. The set
T = {Iα : α ∈ ω1} is an uncountable set. Moreover, for any α, β ∈ ω1 with
β ∈ α, we have either Iβ < Iα (i.e., Iα  Iβ), or Iβ and Iα are incomparable (i.e.,
Iα ∩ Iβ = ∅). Thus, for each α ∈ ω1, {I ∈ T : I < Iα} is well-ordered. Hence, by
adjoining the entire set S as a root to T , (T,<) is a tree. It remains to show that T
has no uncountable anti-chains, no uncountable branches, and that h(T ) = ω1.

no uncountable anti-chains: By construction of T , two elements I, J ∈ T are in-
comparable if and only if I and J are disjoint intervals of S, and since S satisfies
ccc, every anti-chain in T is countable.

no uncountable branches: Assume towards a contradiction that η = {[aα, bα] : α ∈
ω1} ⊆ T is a branch of T of length ω1 such that for all α, α′ ∈ ω1, α ∈ α′ implies
aα < aα′ , i.e., for the corresponding intervals we have Iα′  Iα. Then the intervals
(aα, aα+1) (for α ∈ ω1) form an uncountable collection of non-empty, pairwise
disjoint open intervals in S, contradicting the fact that S satisfies ccc.

h(T ) = ω1: Since all branches of T are countable, the height of T is at most ω1. On
the other hand, since every level of T is an anti-chain and therefore countable, and
|T | = ω1, the height of T is at least ω1. Hence, h(T ) = ω1.
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(⇐) We first prove the following

CLAIM. If there is a Suslin tree, then there exists a Suslin tree T̃ with the following
additional properties:

(d) For all x ∈ T̃ and all α ∈ ω1 with o.t.(x) ∈ α, T̃x|α 6= ∅, i.e., there is a
y ∈ T̃ |α with x < y.

(e) For each limit ordinal λ ∈ ω1 and for all x, y ∈ T |λ, if x and y have the same
predecessors, then x = y, i.e.,

x, y ∈ T |λ ∧ {z ∈ T : z < x} = {z ∈ T : z < y} → x = y .

(f) For all x ∈ T̃ , |succT̃ (x)| = ω.

Proof of Claim. Let T be a Suslin tree. First, let T ′ := {x ∈ T : |Tx| = ω1}. Notice
that since h(T ) = ω1 and every anti-chain in T is countable, for every x ∈ T ′ and
every α ∈ ω1 with o.t.(x) ∈ α, there is a y ∈ T ′|α such that x < y. Next, let
T ′′ := {x ∈ T ′ : |succT ′(x)| ≥ 2}, i.e., T ′′ ⊆ T ′ is the set of all branching points
of T ′. Then every limit level of T ′′ is infinite, and since every anti-chain in T ′′ is
countable, every limit level of T ′′ is countably infinite. Moreover, since |T ′x| = ω1

(for all x ∈ T ′) and every branch in T ′ is countable, T ′′ is still a Suslin tree, and in
addition, it satisfies property (d).

Now, for each x ∈ T ′′ with o.t.(x) = λ for some limit ordinal λ ∈ ω1 we add an
extra node wx to T ′′ and stipulate

z < wx ⇐⇒ z < x and wx < z ⇐⇒ x ≤ z .

Roughly speaking, wx is a node between {z ∈ T ′′ : z < x} and x. Let

T ′′′ := T ′′ ∪ {wx : x ∈ T ′′ ∧ o.t.(x) = λ}

where λ ∈ ω1 is a limit ordinal. Notice that the root of T ′′′ is wx0 , where x0 is the
root of T ′′. Since every level of T ′′ is countable and there are just ω1 limit ordinals
in ω1, T ′′′ is still a Suslin tree, and in addition, it satisfies properties (d) and (e).

Finally, let T̃ consist of all x ∈ T ′′′ at limit levels, i.e., of all x ∈ T ′′′ such that
o.t.(x) = λ for some limit ordinal λ ∈ ω1. In fact, T̃ = T ′′′ \T ′′. Notice that by the
construction of T ′′ we get that for all x ∈ T̃ , succT̃ (x) is infinite, and since every
anti-chain in T̃ is countable, we obtain |succT̃ (x)| = ω. Notice also that T̃ still
satisfies property (d). Hence, T̃ is a Suslin tree which satisfies properties (d), (e),
and (f). ⊣Claim

Let now T be a Suslin tree which satisfies properties (d), (e), and (f) of the CLAIM.
The Suslin line S̄ will be the completion of the set S consisting of all branches
η ⊆ T . Since T satisfies property (f), every x ∈ T has countably many successors.
For each x ∈ T fix a bijection σx : succT (x) → Q. With respect to σx we define an
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ordering “≺” on the elements of S (i.e., on the countable branches of T ) as follows:
Let η = {xβ : β ∈ λ} and η′ = {x′β : β ∈ λ′} be two branches of T . Then,
by (e) and (f), both λ and λ′ are limit ordinals. If α is the least level where η and
η′ differ, then, by property (e), α is a successor ordinal. So, α = β + 1, xβ = x′β
and xβ+1 6= x′β+1; in particular we have σxβ

= σx′
β

and σxβ
(xβ+1) 6= σxβ

(x′β+1).
Now, let

η ≺ η′ ⇐⇒ σxβ
(xβ+1) <Q σxβ

(x′β+1)

where “<Q” denotes the natural linear ordering on Q. It remains to show that
the completion S̄ of the linearly ordered S is a Suslin line, i.e., S̄ is linearly or-
dered, unbounded, dense, complete, satisfies ccc, but is not separable. Recall that
by LEMMA 20.2, it is enough to show that S is linearly ordered, unbounded, dense,
satisfies ccc, but is not separable.

S is linearly ordered and unbounded: Let η = {xβ : β ∈ λ} and η′ = {x′β : β ∈
λ′} be two different elements of S and let β + 1 be the least level where η and η′

differ. Then we have σxβ
(xβ+1) 6= σxβ

(x′β+1) which shows that either η < η′ or
η′ < η. To show that S is unbounded is left as an exercise for the reader.

S is dense: Let η = {xβ : β ∈ λ} and η′ = {x′β : β ∈ λ′} be two elements of S
such that η < η′, and let β + 1 be the least level where η and η′ differ. Then there
is a branch η′′ = {x′′β : β ∈ λ′′} of T such that for all γ ∈ β + 1 we have x′′γ = xγ ,
and

σxβ
(xβ+1) <Q σxβ

(x′′β+1) <Q σxβ
(x′β+1) ,

which implies that η < η′′ < η′.

S satisfies ccc: For every x ∈ T let Ix := {η ∈ S : x ∈ η}. Now, for every
non-empty open interval (η, η′) ⊆ S we find an x ∈ T such that Ix ⊆ (η, η′). To
see this, let β + 1 be the least level where η and η′ differ and choose x ∈ T such
that σxβ

(xβ+1) <Q σxβ
(x) <Q σxβ

(x′β+1). Notice that if Ix and Iy are disjoint,
then x and y are incomparable in T . So, to any collection I of pairwise disjoint,
non-empty open intervals of S we obtain an anti-chain in T of the same size as I ,
and since every anti-chain in T is countable, S satisfies ccc.

S is not separable: Let C be an arbitrary countable set of branches of T and let
α ∈ ω1 be such that α is bigger than the order type of any η ∈ C . Notice that since
all branches of T are countable and ω1 is regular, such an ordinal α exists. Now,
choose an element x ∈ T |α and two distinct branches η, η′ ∈ S which both contain
x. Then (η, η′)∩C = ∅, which shows that C is not dense in S. Hence, since C was
arbitrary, S is not separable. ⊣
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There May Be No Suslin Line

In this section we show that MA(ω1) implies that there exists no Suslin line. In
particular, if we assume MA(ω1), then every linearly ordered set which is dense,
unbounded, complete, and satisfies ccc, is isomorphic to the real line.

PROPOSITION 20.4. MA(ω1) implies that there exists no Suslin line.

Proof. Assume towards a contradiction that there exists a Suslin line. Then, by
the proof of LEMMA 20.3, there exists a Suslin tree (T,<) with the additional
properties (d), (e), and (f). With respect to (T,<) we define the forcing notion
PT := (T,≤). Since T is a Suslin tree, every anti-chain in T is countable, hence,
PT satisfies ccc. For each β ∈ ω1 let

Dβ :=
⋃{

T |α : β ∈ α ∈ ω1

}
.

Then, by property (d), for each β ∈ ω1, Dα is an open dense subset of PT . Finally,
let D := {Dβ : β ∈ ω1} and let G ⊆ T be a D-generic filter on T . Then G is a
branch of T of length ω1, which contradicts the fact that all branches of the Suslin
tree T are countable. ⊣

As an immediate consequence we get

COROLLARY 20.5. It is consistent with ZFC that there exists no Suslin line.

There May Be a Suslin Line

In this section we show that it is consistent with ZFC that there exists a Suslin line.
In particular, it is consistent with ZFC that there exists a linearly ordered set which
is dense, unbounded, complete, and satisfies ccc, but which is not isomorphic to the
real line.

We first construct a particular tree Tω1 and show that with a Cohen real we can
transform the tree Tω1 to a Suslin tree. We start with the following preliminary
result.

LEMMA 20.6. There exists a sequence 〈eα : α ∈ ω1〉 such that:

(a) for each α ∈ ω1, eα : α →֒ ω is an injective function from α into ω;

(b) for all α ∈ β ∈ ω1, the set {ξ ∈ α : eα(ξ) 6= eβ(ξ)} is finite;

(c) for each α ∈ ω, the set ω \ eα[α] is infinite.
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Proof. The proof is by induction on ω1. For α = 0, let e0 be the empty function.
If α = γ + 1, then let eα := eγ ∪ {〈γ, n〉}, where n ∈ ω \ eα[α]. Notice that by
property (c), such an n exists and that eα has the required properties.

Suppose now that α ∈ ω1 is a limit ordinal and that the sequence 〈eγ : γ ∈ α〉 is
already constructed. Let 〈γk : k ∈ ω〉 be an increasing sequence such that

⋃{γk :
k ∈ ω} = α. Notice that since α ∈ ω1, α is countable, in particular, cf(α) = ω.
By (c), for each k ∈ ω we have

∣∣ω\eγk [γk]
∣∣ = ω, and by (b), for k, l ∈ ω with k < l

we have eγk [γk] ⊆∗ eγl [γl]. So, there exists an infinite set A ∈ [ω]ω which is almost
contained in ω \ eγk [γk] for each k ∈ ω. In other words, for all k ∈ ω, A ∩ eγk [γk]
is finite. Split A into two disjoint infinite sets A1 and A2, i.e., A = A1 ∪ A2,
A1 ∩ A2 = ∅, and A1, A2 ∈ [ω]ω. Without loss of generality assume γ0 = 0 and
for each k ∈ ω let [γk, γk+1) := {ξ : γk = ξ ∨ γk ∈ ξγk+1}, and for the sake of
simplicity let Ik := [γk, γk+1).

CLAIM. For each k ∈ ω there is an injective function fk : Ik →֒ ω such that:

• fk[Ik] ∩ A1 = ∅;

•
{
ξ ∈ Ik : fk(ξ) 6= eγk+1

(ξ)
}

is finite;

•
⋃
k′≤k fk′ : γk+1 →֒ ω is injective.

Proof of Claim. The construction is by induction on ω. First we define f0 := eγ1 .
Assume now that fk′ is already constructed for all k′ < k. For ξ ∈ Ik define
fk(ξ) := eγk+1

(ξ) if eγk+1
(ξ) /∈

(
A1 ∪

⋃
k′<k fk′ [Ik′ ]

)
, otherwise, let fk(ξ) := n

where n ∈ A2 \
(⋃

k′<k fk′ [Ik′ ]∪
⋃
ξ′∈Ik∩ξ

fk(ξ
′)
)
. Then for all k ∈ ω, fk has the

required properties (the details are left as an exercise for the reader). ⊣Claim

Finally, let
eα :=

⋃

k∈ω

fk .

Then, by the properties of fk (for k ∈ ω), eα : α →֒ ω is an injection, for all γ ∈ α,
{ξ ∈ α : eγ(ξ) 6= eα(ξ)} is finite, and since eα[α]∩A1 = ∅, ω \ eα[α] is infinite. ⊣

Let 〈eα : α ∈ ω1〉 be the sequence of LEMMA 20.6 and define

Tω1 :=
{
η : ∃α ∈ ω1

(
η : α →֒ ω ∧

∣∣{ξ ∈ α : η(ξ) 6= eα(ξ)
}∣∣ < ω

)}
.

Furthermore, for distinct η, η′ ∈ Tω1 let

η < η′ ⇐⇒ dom(η)  dom(η′) ∧ η′|dom(η) = η .

Then (Tω1 , <) is a tree of height ω1, where all branches and all levels of Tω1 are
countable. We leave it as an exercise for the reader to show that Tω1 is a tree. To see
that all branches of Tω1 are countable, notice that a branch of length ω1 would yield
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an injection from ω1 into ω, which is obviously impossible. Furthermore, to see that
every level of Tω1 is countable, notice that for each α ∈ ω1, the αth level

Tω1 |α =
{
η : dom(η) = α ∧

∣∣{ξ ∈ α : η(ξ) 6= eα(ξ)
}∣∣ < ω

)}

is countable. A tree with these properties is called Aronszajn tree. In particular,
the existence of Aronszajn trees is provable in ZFC, whereas the existence of Suslin
trees is not provable in ZFC, as we have seen above. However, there are models of
ZFC in which Suslin trees exist, as we will see below; but first we introduce the
following notion:
For a real x ∈ ωω we define

x ◦Tω1 := {x ◦ η : η ∈ Tω1}

where x ◦ η(ξ) := x
(
η(ξ)

)
. Notice that for η ∈ Tω1 |α, x ◦ η : α → ω is still a

function from α to ω, but not necessarily an injection. Furthermore, notice that for
different η, η′ ∈ Tω1 |α, we may have x ◦ η = x ◦ η′. However, (x ◦Tω1 , <) is still
an Aronszajn tree.

Now we are ready to prove the following result.

PROPOSITION 20.7. Let V be a model of ZFC and let c ∈ ωω be a Cohen real
over V. Then there exists a Suslin tree in V[c], in fact

V[c] � c ◦Tω1 is a Suslin tree .

Proof. We consider Cohen forcingC = (C,≤) forC =
⋃
n∈ω

nω. Since the height
of c ◦Tω1 is ω1, in order to prove that c ◦Tω1 is a Suslin tree, we just have to show
that c ◦Tω1 has neither uncountable anti-chains nor uncountable branches.

First we prove a preliminary result: Let {ηβ : β ∈ ω1} = Tω1 be an enumeration
of Tω1 such that for all β, β′ ∈ ω1 with β ∈ β′ we have dom(ηβ) ⊆ dom(ηβ′).
Furthermore, let

A
˜

⊆
{
〈η
˙
β, p〉 : β ∈ ω1 ∧ p ∈ C

}

be a C-name for an uncountable subset of Tω1

˙
[c], i.e.,

V[c] � “A
˜
[c] is an uncountable subset of Tω1

˙
[c]”.

Since the set C of C-conditions is countable, there is a C-condition p0 such that

U :=
{
β ∈ ω1 : 〈η

˙
β , p0〉 ∈ A

˜
}

is uncountable. Let n0 := dom(p0) and for each β ∈ U let

Eβ :=
{
γ ∈ dom(ηβ) : ηβ(γ) ∈ n0

}
.
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CLAIM. There is an uncountable set W ⊆ U and a finite set ∆ ⊆ ω1, such that for
all β, β′ ∈ W with β ∈ β′ we have

Eβ ∩ Eβ′ = ∆ , ηβ |∆ = ηβ′ |∆ , and ∀ξ ∈ dom(ηβ)
(
ηβ′(ξ) ∈ n0 → ξ ∈ ∆

)
.

Notice that the last condition is equivalent to (Eβ′ \∆) ∩ dom(ηβ) = ∅.

Proof of Claim. By applying the ∆-SYSTEM LEMMA 14.3 to the family {Eβ : β ∈
U} we find an uncountable family U∆ ⊆ U and a finite set ∆ ⊆ ω1, such that for
any distinct β, β′ ∈ U∆ we haveEβ∩Eβ′ = ∆. Now, since n0 is finite, uncountably
many functions ηβ , where β ∈ U∆, must agree on ∆. Hence, there is an uncountable
set U ′ ⊆ U∆ such that for any β, β′ ∈ U ′ we have ηβ |∆ = ηβ′ |∆.

Furthermore, we can construct an increasing sequence 〈αδ : δ ∈ ω1〉 of elements of
U ′ such that for all γ, δ ∈ ω1 with γ ∈ δ (i.e., αγ ∈ αδ) we have

∀ξ ∈ dom(ηαγ
)
(
ηαδ

(ξ) ∈ n0 → ξ ∈ ∆
)
.

The construction is by induction on ω1. Let α0 =
⋂
U ′ and let U0 = U ′. Now,

assume that for all γ ∈ δ, where δ ∈ ω1, we have already constructed ordinals
αγ ∈ ω1 and uncountable sets Uγ ⊆ U ′. If δ = ν + 1, then let

Uδ =
{
β ∈

(
Uν \ {αν}

)
: ∀ξ ∈ dom(αν)

(
ηβ(ξ) ∈ n0 → ξ ∈ ∆

)}

and let
αδ =

⋂
Uδ .

To see that Uδ is uncountable, consider the set (Uν \ {αν}) \ Uδ, which consists of
all β ∈ (Uν \ {αν}) such that for some ξ ∈ dom(αν), ηβ(ξ) ∈ n0 \∆. Now, since
(Eβ ∩Eβ′) \∆ = ∅ (for any distinct β, β′ ∈ U ′), and since dom(αν) is countable,
the set (Uν \ {αν}) \ Uδ is countable. Hence, since Uν is uncountable, this shows
that Uδ is an uncountable subset of U ′.

In the case when δ is a limit ordinal, let Uδ =
⋂
γ∈δ Uη and let αδ =

⋂
Uδ. Since

each set Uν \ Uν+1 (for ν ∈ δ) is countable and since δ is a countable ordinal, the
set Uδ is an uncountable subset of U ′.

Finally, let W = {αδ : δ ∈ ω1}. Then W is an uncountable subset of U ′ with the
required properties. ⊣Claim

Now, we show that c ◦Tω1 has no uncountable anti-chains. For this, assume towards
a contradiction that

V[c] � “c ◦Tω1 contains an uncountable anti-chain”

and let
A
˜

⊆
{
〈η
˙
β, p〉 : β ∈ ω1 ∧ p ∈ C

}
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be a C-name for an uncountable subset of Tω1

˙
[c] such that in V[c], the set

{
c ◦ ηβ : ∃p ∈ C

(
〈η
˙
β , p〉 ∈ A

˜
)}

is an uncountable anti-chain in c ◦Tω1 . With respect to A
˜

, let p0, n0, W , and ∆ be
as in the claim above, i.e., p0 is a C-condition, n0 = dom(p0), and W,∆ ⊆ ω1

where W is uncountable and ∆ is finite. Notice that for

A
˜
′ :=

{
〈η
˙
β , p0〉 : β ∈W

}

we have p0 C A
˜
′ ⊆ A

˜
, moreover,

p0 C “
{
c ◦ ηβ : 〈η

˙
β, p0〉 ∈ A

˜
′
}

is an uncountable anti-chain in c ◦Tω1”.

The goal is now to construct a C-condition q ≥ p0 such that for distinct β0, β1 ∈ W
with β0 ∈ β1 we have

q C c ◦ ηβ0 ≤ c ◦ ηβ1 .

For this, fix two ordinals β0, β1 ∈ W with β0 ∈ β1. By the properties of Tω1 and
since β0, β1 ∈W , we have:

(a)
∣∣{ξ ∈ dom(ηβ0) : ηβ1(ξ) 6= ηβ0(ξ)

}∣∣ < ω

(b) ηβ0 |∆ = ηβ1 |∆
(c) ∀ξ ∈ dom(ηβ0)

(
ηβ1(ξ) ∈ n0 → ξ ∈ ∆

)

Now, let
Ξ :=

{
ξ ∈ dom(ηβ0) : ηβ0(ξ) 6= ηβ1(ξ)

}

and define
F :=

{〈
ηβ0(ξ), ηβ1(ξ)

〉
: ξ ∈ Ξ

}
.

Notice that by (a), Ξ is a finite subset of ω1, and consequently, F is a finite subset
of ω×ω. In particular, F ⊆ m×m for some m ∈ ω. Since both functions, ηβ0 and
ηβ1 , are injective, we can identify F with a bijection f : A→ B where

A :=
{
ηβ0(ξ) : ξ ∈ Ξ

}
and B :=

{
ηβ1(ξ) : ξ ∈ Ξ

}
.

Furthermore,B ∩ n0 = ∅. To see this, notice that by (c),

D :=
{
ξ ∈ dom(ηβ0) : ηβ1(ξ) ∈ n0

}
⊆ ∆ ,

and by (b) we have ηβ0 |∆ = ηβ1 |∆, hence, ηβ0(ξ) = ηβ1(ξ) for every ξ ∈ D. As
a consequence we get that for every k ∈ A we have f(k) ≥ n0. Now, for every
k ∈ A ∩ n0 let Ok := {ki : i ∈ ω} such that k0 := k and
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f(ki+1) :=

{
f(ki) if ki ∈ A,

ki otherwise.

Since f is a bijection and f(k) ≥ n0 for all k ∈ A ∩ n0, for any distinct k, k′ ∈
A ∩ n0 we have Ok ∩ Ok′ = ∅. Finally, for every k ∈ A ∩ n0 let jk := p0(k), and
define q ∈ mω by stipulating q|n0 := p0, and in general, for l ∈ m, we define

q(l) :=

{
jk if l ∈ Ok ,

0 otherwise.

Then q ≥ p0 and by construction we have

q C c ◦ ηβ0 ≤ c ◦ ηβ1 .

It remains to show that c ◦Tω1 has no uncountable branches. For this, assume to-
wards a contradiction that

V[c] � “c ◦Tω1 has an uncountable branch”

and let
B
˜

⊆
{
〈η
˙
β , p〉 : β ∈ ω1 ∧ p ∈ C

}

be a C-name for an uncountable subset of Tω1

˙
[c] such that in V[c], the set

{
c ◦ ηβ : ∃p ∈ C

(
〈η
˙
β , p〉 ∈ B

˜
)}

is an uncountable branch of c ◦Tω1 . With respect to the C-name B
˜

, let p0 ∈ n0ω,
W , B, ∆, Ξ , be as in the claim above. Notice that for

B
˜
′ :=

{
〈η
˙
β, p0〉 : β ∈ W

}

we have p0 C B
˜
′ ⊆ B

˜
, in particular,

p0 C “the elements of
{
c ◦ ηβ : 〈η

˙
β, p0〉 ∈ B

˜
′
}

are pairwise compatible”.

The goal is now to construct a C-condition q ≥ p0 such that for distinct β0, β1 ∈ W
we obtain

q C “c ◦ ηβ0 and c ◦ ηβ1 are incomparable”.

Then, by similar arguments as above, one can show that there are β0, β1 ∈ W with
β0 ∈ β1 such that for some ξ0 ∈ dom(ηβ0), ηβ0(ξ0) 6= ηβ1(ξ0) and ηβ1(ξ0) /∈ n0.
To see this, assume first that for all β, β′ ∈ W with β ∈ β′ we have ηβ < ηβ′ .
Then, since W is uncountable, this yields an injection from an uncountable subset
of ω1 into ω, which is obviously a contradiction. Now, take any two β0, β1 ∈ W
with β0 ∈ β1 such that ηβ0 6= ηβ1 . Then there is a ξ0 ∈ dom(ηβ0) such that
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ηβ0(ξ0) 6= ηβ1(ξ0), in particular, ξ0 ∈ Ξ . Moreover, since B ∩ n0 = ∅, we have
ηβ1(ξ0) /∈ n0.

Finally, let q ≥ p0 be a C-condition such that

dom(q) = dom(p0) ∪
{
ηβ0(ξ0), ηβ1(ξ0)

}
and q

(
ηβ0(ξ0)

)
6= q
(
ηβ1(ξ0)

)
.

Notice that since ηβ1(ξ0) /∈ n0, there is no restriction on the value of q
(
ηβ1(ξ0)

)
.

Clearly, q C “c ◦ ηβ0 and c ◦ ηβ1 are incomparable”, which implies that c ◦ ηβ0 and
c ◦ ηβ1 cannot belong to the same branch. ⊣

By combining LEMMA 20.3 and PROPOSITION 20.7 we get the following

COROLLARY 20.8. It is consistent with ZFC that there exists a Suslin line.

As a further consequence of the preceding results we get

COROLLARY 20.9. If c = p > ω1, then MA(ω1) fails after adding a Cohen real.

Proof. Let V be a model of c = p > ω1 in which MA(ω1) holds in V. So, by
PROPOSITION 20.4, there is no Suslin line in V. Now, let c be a Cohen real over V.
Then, by PROPOSITION 20.7, there exists a Suslin line in V[c]. So, MA(ω1) fails
in V[c]. ⊣

NOTES

Suslin’s Problem. Suslin’s Problem was posed by Suslin and published posthu-
mously in [10]. Translated into English it states: Is a (linearly) ordered set without
jumps or gaps, such that every set of its intervals (containing more than one element)
not overlapping each other is at most denumerable, necessarily an (ordinary) linear
continuum?

The Existence of Suslin Lines and Suslin Trees. LEMMA 20.3, which gives the
relation between Suslin lines and Suslin trees, is taken from Jech [3, Section 22].
The first models in which a Suslin line exists were discovered by Jech [2] and Ten-
nenbaum [11]. The construction for adding a Suslin tree by Cohen forcing is due to
Shelah [9, §1]. However, the approach taken here is due to Todorčević [12, p. 292 f.]
(see also Bartoszyński and Judah [1, Section 3.3.A]). Finally, we would like to men-
tion that one of the main reasons to formulate Martin’s Axiom was that MA(ω1)
implies that there is no Suslin tree (see Martin and Solovay [8]).
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RELATED RESULTS

110. There is a Suslin Line in L. Jensen showed that a certain combinatorial princi-
ple, denoted ⋄, implies the existence of a Suslin line (see Jensen [5, 6]). Now,
since ⋄ holds in Gödel’s constructible universe L, there is a Suslin line in L
(see also Jech [3, Section 22] and [4, Chapter 27]).

111. S × S does not satisfy ccc. Let S be a Suslin line. Then S satisfies ccc but is
not separable. By the latter property one can construct an uncountable family
of pairwise disjoint non-empty open subsets of S × S. So, S × S does not
satisfy ccc (see Kunen [7, Chapter II, §4]).
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